basin scale
Recently Published Documents


TOTAL DOCUMENTS

2250
(FIVE YEARS 1028)

H-INDEX

84
(FIVE YEARS 21)

Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 57
Author(s):  
Marika Galanidi ◽  
Argyro Zenetos

In the present work, we analysed time series data on the introduction of new non-indigenous species (NIS) in the Mediterranean between 1970 and 2017, aiming to arrive at recommendations concerning the reference period and provisional threshold values for the NIS trend indicator. We employed regression analysis and breakpoint structural analysis. Our results confirm earlier findings that the reference conditions differ for the four Mediterranean subregions, and support a shortening of the reporting cycle from six to three years, with a two-year time lag for the ensuing assessment. Excluding Lessepsian fishes and parasites, the reference period, defined as the most recent time segment with stable mean new NIS values, was estimated as 1997–2017 for the eastern Mediterranean, 2012–2017 for the central Mediterranean, 2000–2017 for the Adriatic and 1970–2017 for the western Mediterranean. These findings are interpreted primarily on the basis of a basin scale temperature regime shift in the late 1990s, shifts in driving forces such as shellfish culture, and as a result of intensified research efforts and citizen scientist initiatives targeting NIS in the last decade. The threshold values, i.e., the three-year average new NIS values during the reference period, are indicative and will ultimately depend on the choice of species and pathways to be used in the calculations. This is discussed through the prism of target setting in alignment with specific management objectives.


2022 ◽  
Vol 14 (2) ◽  
pp. 400
Author(s):  
Pooja Preetha ◽  
Ashraf Al-Hamdan

(1) The existing frameworks for water quality modeling overlook the connection between multiple dynamic factors affecting spatiotemporal sediment yields (SY). This study aimed to implement satellite remotely sensed data and hydrological modeling to dynamically assess the multiple factors within basin-scale hydrologic models for a realistic spatiotemporal prediction of SY in watersheds. (2) A connective algorithm was developed to incorporate dynamic models of the crop and cover management factor (C-factor) and the soil erodibility factor (K-factor) into the Soil and Water Assessment Tool (SWAT) with the aid of the Python programming language and Geographic Information Systems (GIS). The algorithm predicted the annual SY in each hydrologic response unit (HRU) of similar land cover, soil, and slope characteristics in watersheds between 2002 and 2013. (3) The modeled SY closely matched the observed SY using the connective algorithm with the inclusion of the two dynamic factors of K and C (predicted R2 (PR2): 0.60–0.70, R2: 0.70–0.80, Nash Sutcliffe efficiency (NS): 0.65–0.75). The findings of the study highlight the necessity of excellent spatial and temporal data in real-time hydrological modeling of catchments.


2022 ◽  
Vol 14 (2) ◽  
pp. 927
Author(s):  
Zhanna Buryak ◽  
Fedor Lisetskii ◽  
Artyom Gusarov ◽  
Anastasiya Narozhnyaya ◽  
Mikhail Kitov

The quantitative and qualitative depletion of water resources (both surface and groundwater) is closely related to the need to protect soils against degradation, rationalization of land use, and regulation of surface water runoff within the watershed area. Belgorod Oblast (27,100 km2), one of the administrative regions of European Russia, was chosen as the study area. It is characterized by a high activity of soil erosion (the share of eroded soils is about 48% of the total area of arable land). The development phase of the River Basin Environmental Management Projects (217 river basins from the fourth to seventh order) allowed for the proceeding of the development of an integrated monitoring system for river systems and river basin systems. The methods used to establish a geoecological network for regional monitoring include the selection and application of GIS techniques to quantify the main indicators of ecological state and predisposition of river basins to soil erosion (the share of cropland and forestland, the share of the south-oriented slopes, soil erodibility, Slope Length and Steepness (LS) factor, erosion index of precipitation, and the river network density) and the method of a hierarchical classification of cluster analysis for the grouping of river basins. An approach considering the typology of river basins is also used to expand the regional network of hydrological gauging stations to rationalize the national hydrological monitoring network. By establishing 16 additional gauging stations on rivers from the fourth to seventh order, this approach allows for an increase in the area of hydro-agroecological monitoring by 1.26 times (i.e., up to 77.5% of the total area of Belgorod Oblast). Some integrated indicators of agroecological (on the watershed surface) and hydroecological (in river water flow) monitoring are proposed to improve basin environmental management projects. Six-year monitoring showed the effectiveness of water quality control measures on an example of a decrease in the concentrations of five major pollutants in river waters.


2022 ◽  
Author(s):  
Yong Qian Tian ◽  
Qian Yu ◽  
Hunter Carrick ◽  
Brian Becker ◽  
Remegio Confesor ◽  
...  

Abstract Improving understanding of dissolved organic carbon (DOC) cycling from farmlands to rivers is a challenge due to the complex influence of farming practices, the hydrology of predominantly flat lowlands, and seasonal snowpack effects. Monthly field DOC concentrations were measured throughout the year at sub-basin scale across the Chippewa River Watershed, which falls within the Corn Belt of the Midwestern United States. The observations from croplands were benchmarked against the data sampled from hilly forested areas in the Connecticut River Watershed. The Soil Water Assessment Tool (SWAT) was used to simulate daily soil water properties. This method tests for a framework for using the combination of new field data, hydrological modelling, and knowledge-based reclassification of Land Use/Land Cover (LULC) to analyze the predictors of both the spatial and temporal changes of DOC over farmlands. Our results show: 1) DOC concentrations from cropland baseflow were substantially high throughout the year, especially for spring runoff/snowmelt scenarios, 2) gradient analysis with spatial factors only was able to explain ~82% of observed annual mean DOC concentrations, and 3) with both spatial and temporal factors: [Evapotranspiration, Soil Water, and Ground Water], the analysis explained ~81% of seasonal and ~54% of daily variations in observed DOC concentrations.


2022 ◽  
Vol 9 ◽  
Author(s):  
Pedro Val ◽  
Nathan J. Lyons ◽  
Nicole Gasparini ◽  
Jane K. Willenbring ◽  
James S. Albert

The exceptional concentration of vertebrate diversity in continental freshwaters has been termed the “freshwater fish paradox,” with > 15,000 fish species representing more than 20% of all vertebrate species compressed into tiny fractions of the Earth’s land surface area (<0.5%) or total aquatic habitat volume (<0.001%). This study asks if the fish species richness of the world’s river basins is explainable in terms of river captures using topographic metrics as proxies. The River Capture Hypothesis posits that drainage-network rearrangements have accelerated biotic diversification through their combined effects on dispersal, speciation, and extinction. Yet rates of river capture are poorly constrained at the basin scale worldwide. Here we assess correlations between fish species density (data for 14,953 obligate freshwater fish species) and basin-wide metrics of landscape evolution (data for 3,119 river basins), including: topography (elevation, average relief, slope, drainage area) and climate (average rainfall and air temperature). We assess the results in the context of both static landscapes (e.g., species-area and habitat heterogeneity relationships) and transient landscapes (e.g., river capture, tectonic activity, landscape disequilibrium). We also relax assumptions of functional neutrality of basins (tropical vs. extratropical, tectonically stable vs. active terrains). We found a disproportionate number of freshwater species in large, lowland river basins of tropical South America, Africa, and Southeast Asia, under predictable conditions of large geographic area, tropical climate, low topographic relief, and high habitat volume (i.e., high rainfall rates). However, our results show that these conditions are only necessary, but not fully sufficient, to explain the basins with the highest diversity. Basins with highest diversity are all located on tectonically stable regions, places where river capture is predicted to be most conducive to the formation of high fish species richness over evolutionary timescales. Our results are consistent with predictions of several landscape evolution models, including the River Capture Hypothesis, Mega Capture Hypothesis, and Intermediate Capture Rate Hypothesis, and support conclusions of numerical modeling studies indicating landscape transience as a mechanistic driver of net diversification in riverine and riparian organisms with widespread continental distributions.


2022 ◽  
Author(s):  
Henri Drake ◽  
Xiaozhou Ruan ◽  
Raffaele Ferrari ◽  
Andreas Thurnherr ◽  
Kelly Ogden ◽  
...  

The abyssal overturning circulation is thought to be primarily driven by small-scale turbulent mixing. Diagnosed watermass transformations are dominated by rough topography "hotspots", where the bottom-enhancement of mixing causes the diffusive buoyancy flux to diverge, driving widespread downwelling in the interior—only to be overwhelmed by an even stronger upwelling in a thin Bottom Boundary Layer (BBL). These watermass transformations are significantly underestimated by one-dimensional sloping boundary layer solutions, suggesting the importance of three-dimensional physics. Here, we use a hierarchy of models to generalize this one-dimensional boundary layer approach to three-dimensional eddying flows over realistically rough topography. When applied to the Mid-Atlantic Ridge in the Brazil Basin, the idealized simulation results are roughly consistent with available observations. Integral buoyancy budgets isolate the physical processes that contribute to realistically strong BBL upwelling. The downwards diffusion of buoyancy is primarily balanced by upwelling along the canyon flanks and the surrounding abyssal hills. These flows are strengthened by the restratifying effects of submesoscale baroclinic eddies on the canyon flanks and by the blocking of along-ridge thermal wind within the canyon. Major topographic sills block along-thalweg flows from restratifying the canyon trough, resulting in the continual erosion of the trough's stratification. We propose simple modifications to the one-dimensional boundary layer model which approximate each of these three-dimensional effects. These results provide \textit{local} dynamical insights into mixing-driven abyssal overturning, but a complete theory will also require the non-local coupling to the basin-scale circulation.


Author(s):  
Xin Zhou ◽  
Mustafa Moinuddin ◽  
Fabrice Renaud ◽  
Brian Barrett ◽  
Jiren Xu ◽  
...  

AbstractWhile the Sustainable Development Goals (SDG) are broadly framed with 17 goals, the goals and their targets inherently connect with each other forming a complex system. Actions supporting one goal may influence progress in other goals, either positively (synergies) or negatively (trade-offs). Effective managing the synergies and trade-offs is a prerequisite for ensuring policy coherence. This is particular relevant at the river basin scale where the implementation of national policies may generate inequalities at the sub-basin levels, such as the upstream and the downstream. In the existing literature, there is still a lack of methodologies to assess the SDG interlinkages and their differences at the subnational levels. This paper presents a methodology on the development of an SDG interlinkages analysis model at the basin scale and its application to a case study in China’s Luanhe River Basin (LRB). Seven broad areas, namely land use and land cover change, climate change, ecosystem services, flood risks, water sector, urbanisation, and energy, were set as the scope of study. Through a systematic review, key elements of the SDG interlinkages system were identified and their interactions were mapped. The resulting generic SDG interlinkages model were validated with expert survey and stakeholders’ consultation and tailored to the LRB. Quantification of the SDG interlinkages was conducted for 27 counties in the LRB and demonstrated by the results of 3 selected counties located in the upstream, midstream and downstream areas, respectively. The methodology and its applications can be used to support integrated water resource management in river basins.


2022 ◽  
Vol 19 (1) ◽  
pp. 47-69
Author(s):  
Paula Maria Salgado-Hernanz ◽  
Aurore Regaudie-de-Gioux ◽  
David Antoine ◽  
Gotzon Basterretxea

Abstract. We estimated pelagic primary production (PP) in the coastal (<200 m depth) Mediterranean Sea from satellite-borne data, its contribution to basin-scale carbon fixation, its variability, and long-term trends during the period 2002–2016. Annual coastal PP was estimated at 0.041 Gt C, which approximately represents 12 % of total carbon fixation in the Mediterranean Sea. About 51 % of this production occurs in the eastern basin, whereas the western and Adriatic shelves contribute with ∼25 % each of total coastal production. Strong regional variability is revealed in coastal PP, from high-production areas (>300 g C m−2) associated with major river discharges to less productive provinces (<50 g C m−2) located in the southeastern Mediterranean. PP variability in the Mediterranean Sea is dominated by interannual variations, but a notable basin-scale decline (17 %) has been observed since 2012 concurring with a period of increasing sea surface temperatures in the Mediterranean Sea and positive North Atlantic Oscillation and Mediterranean Oscillation climate indices. Long-term trends in PP reveal slight declines in most coastal areas (−0.05 to −0.1 g C m−2 per decade) except in the Adriatic where PP increases at +0.1 g C m−2 per decade. Regionalization of coastal waters based on PP seasonal patterns reveals the importance of river effluents in determining PP in coastal waters that can regionally increase up to 5-fold. Our study provides insight into the contribution of coastal waters to basin-scale carbon balances in the Mediterranean Sea while highlighting the importance of the different temporal and spatial scales of variability.


Sign in / Sign up

Export Citation Format

Share Document