urban wastewater
Recently Published Documents


TOTAL DOCUMENTS

1155
(FIVE YEARS 354)

H-INDEX

73
(FIVE YEARS 17)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 243
Author(s):  
Vittoria Grillini ◽  
Paola Verlicchi ◽  
Giacomo Zanni

The management and treatment of hospital wastewater are issues of great concern worldwide. Both in the case of a dedicated treatment or co-treatment with urban wastewater, hospital effluent is generally subjected to pre-treatments followed by a biological step. A polishing treatment is suggested to promote (and guarantee) the removal of micropollutants still present and to reduce the total pollutant load released. Activated carbon-based technologies and advanced oxidation processes have been widely investigated from technical and economic viewpoints and applied in many cases. In this study, the potential exploitation of these technologies for the polishing treatment of hospital effluent is investigated by combining a Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis with a Strategic Orientation (SOR) analysis. This approach allows a coherent strategy to be extracted from the SWOT-SOR data, increasing the chances of success of each technology. It emerges that both technologies present relevant and sometimes similar strengths and can present opportunities. At the same time, activated carbon-based technologies are more likely to contain the main identified threats than O3/UV technology. The study also finds that, for both technologies, further research and development could improve their potential applications in the treatment of hospital wastewater.


2022 ◽  
Vol 12 (3) ◽  
pp. 19-27
Author(s):  
Sumaiya Nusrat Chaitee ◽  
Rudra Protap Biswas ◽  
Md Imran Kabir

The organic content from urban wastewater is treated with various conventional processes efficiently. However, for biological treatment of secondary effluent containing excessive inorganic nitrogen and phosphorus, microalgae can be used. In this study, algal strains have been collected from locally available natural blooms and cultured in a BG-11 medium. Spirulina sp., the blue-green algae, dominant over the other species within the natural bloom, is applied in ten different dosages (0.2-2.5 g/L) to the synthetic wastewater with a 3-day hydraulic retention time. The removal efficiency of nitrate, ammonia, and phosphate have been observed to be about 60%, 30%, and 54% respectively. The highest removal efficiency has been found at 2.5 g/L of microalgae dose. Linear forms of Langmuir and Freundlich isotherms have been used for biosorption modeling, and both isotherms fit well with R2>60% and NRMSE<11% in all cases. Additionally, the separation factor and the adsorption intensity represent the favorability of the biosorption process. Journal of Engineering Science 12(3), 2021, 19-27


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 115
Author(s):  
Daniele Cecconet ◽  
Arianna Callegari ◽  
Andrea G. Capodaglio

UASBs present several advantages compared to conventional wastewater treatment processes, including relatively low construction cost facilities, low excess sludge production, plain operation and maintenance, energy generation in the form of biogas, robustness in terms of COD removal efficiency, pH stability, and recovery time. Although anaerobic treatment is possible at every temperature, colder climates lead to lower process performance and biogas production. These factors can be critical in determining the applicability and sustainability of this technology for the treatment of urban wastewater at low operating temperature. The purpose of this study is the performance evaluation of a pilot-scale (2.75 m3) UASB reactor for treatment of urban wastewater at sub-mesophilic temperature (25 °C), below the optimal range for the process, as related to biogas production and organic matter removal. The results show that, despite lower methane production and COD removal efficiency compared to operation under ideal conditions, a UASB can still achieve satisfactory performance, and although not sufficient to grant effluent discharge requirements, it may be used as a pretreatment step for carbon removal with some degree of energy recovery. Options for UASB pretreatment applications in municipal WWTPs are discussed.


2022 ◽  
Vol 23 (2) ◽  
pp. 77-85
Author(s):  
Ibtissame Elmansouri ◽  
Amal Lahkimi ◽  
Mohamed Benaabou ◽  
Mehdi Chaouch ◽  
Noureddine Eloutassi ◽  
...  

2022 ◽  
pp. 3-16
Author(s):  
Minh T. Vu ◽  
Luong N. Nguyen ◽  
Jakub Zdarta ◽  
Johir A.H. Mohammed ◽  
Nirenkumar Pathak ◽  
...  

2021 ◽  
Vol 2 ◽  
Author(s):  
Z. Amadou Yacouba ◽  
G. Lesage ◽  
J. Mendret ◽  
F. Zaviska ◽  
E. Petit ◽  
...  

Occurrence of emerging organic micropollutants in water bodies and their effects are a concern related to quality of reused water. Advanced oxidation processes have demonstrated promising results to address this challenge. Nonetheless, these processes may lead to the generation of more toxic oxidation by-products. The aim of this study was to investigate the coupling of ozonation and nanofiltration (NF) applied to carbamazepine (CBZ). It consisted in monitoring the degradation and fate of CBZ and its subsequent by-products, their fate and toxicity. CBZ was completely degraded after 5 min of ozonation and six identified transformation by-products were formed: I (hydroxycarbamazepine), BQM [1-(2-benzaldehyde)-4-hydro-(1H, 3H)-quinazoline-2-one], II (2-(1H)-quinazolinone), BaQM [1-(2-benzoic acid)-4-hydro-(1H, 3H)-quinazoline-2-one], BQD [1-(2-benzaldehyde)-(1H, 3H)-quinazoline-2,4-dione] and BaQD [1-(2-benzoic acid)-(1H, 3H)-quinazoline-2,4-dione]. Mineralization rate of ozonation never exceeded 12% even with high ozone dose. Bioassays with Vibrio fischeri revealed that BQM and BQD are responsible for toxicity. NF is able to remove total organic carbon with removal rate up to 93% at 85% of permeate recovery rate. CBZ and its different ozonation by-products were almost completely retained by NF, except the II, which had an MW slightly lower than the membrane molecular weight cut-off, for which the removal rate was still between 80 and 96% depending on the recovery rate.


Sign in / Sign up

Export Citation Format

Share Document