Live Shigella flexneri 2a and Shigella sonnei I vaccine candidate strains with two attenuating markers

Vaccine ◽  
1990 ◽  
Vol 8 (1) ◽  
pp. 30-34 ◽  
Author(s):  
V. Dentchev ◽  
S. Marinova ◽  
Tch. Vassilev ◽  
M. Bratoyeva ◽  
K. Linde
Vaccine ◽  
1990 ◽  
Vol 8 (1) ◽  
pp. 25-29 ◽  
Author(s):  
K. Linde ◽  
V. Dentchev ◽  
V. Bondarenko ◽  
S. Marinova ◽  
B. Randhagen ◽  
...  

Glycobiology ◽  
2019 ◽  
Vol 29 (9) ◽  
pp. 669-680 ◽  
Author(s):  
Neil Ravenscroft ◽  
Martin Braun ◽  
Joerg Schneider ◽  
Anita M Dreyer ◽  
Michael Wetter ◽  
...  

AbstractShigellosis remains a major cause of diarrheal disease in developing countries and causes substantial morbidity and mortality in children. Vaccination represents a promising preventive measure to fight the burden of the disease, but despite enormous efforts, an efficacious vaccine is not available to date. The use of an innovative biosynthetic Escherichia coli glycosylation system substantially simplifies the production of a multivalent conjugate vaccine to prevent shigellosis. This bioconjugation approach has been used to produce the Shigella dysenteriae type O1 conjugate that has been successfully tested in a phase I clinical study in humans. In this report, we describe a similar approach for the production of an additional serotype required for a broadly protective shigellosis vaccine candidate. The Shigella flexneri 2a O-polysaccharide is conjugated to introduced asparagine residues of the carrier protein exotoxin A (EPA) from Pseudomonas aeruginosa by co-expression with the PglB oligosaccharyltransferase. The bioconjugate was purified, characterized using physicochemical methods and subjected to preclinical evaluation in rats. The bioconjugate elicited functional antibodies as shown by a bactericidal assay for S. flexneri 2a. This study confirms the applicability of bioconjugation for the S. flexneri 2a O-antigen, which provides an intrinsic advantage over chemical conjugates due to the simplicity of a single production step and ease of characterization of the homogenous monomeric conjugate formed. In addition, it shows that bioconjugates are able to raise functional antibodies against the polysaccharide antigen.


2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Franklin R. Toapanta ◽  
Paula J. Bernal ◽  
Karen L. Kotloff ◽  
Myron M. Levine ◽  
Marcelo B. Sztein

1991 ◽  
Vol 164 (3) ◽  
pp. 533-537 ◽  
Author(s):  
S. B. Formal ◽  
E. V. Oaks ◽  
R. E. Olsen ◽  
M. Wingfield-Eggleston ◽  
P. J. Snoy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document