Leucomyosuppressin, a novel insect neuropeptide, inhibits evoked transmitter release at the mealworm neuromuscular junction

1988 ◽  
Vol 95 (1-3) ◽  
pp. 137-142 ◽  
Author(s):  
Daisuke Yamamoto ◽  
Sachiyo Ishikawa ◽  
G.Mark Holman ◽  
Ronald J. Nachman
1990 ◽  
Vol 153 (1) ◽  
pp. 129-140 ◽  
Author(s):  
T. P. FENG ◽  
ZHENG-SHAN DAI

Although the entry of calcium ions into the presynaptic nerve terminals through voltage-gated Ca2+ channels is now universally recognized as playing an essential role in evoked transmitter release at the neuromuscular junction (NMJ), and indeed in chemical synapses generally, we have as yet very little direct knowledge of the Ca2+ channels of the presynaptic terminals. In this work, making use of cocultured nerve and muscle cells from Xenopus embryos, we studied the NMJ formed between the soma of identified cholinergic neurones and myoball, which allowed the use of patch-clamps on both the pre- and postsynaptic components. Both whole-cell and single-channel recordings of Ca2+ channels in the presynaptic cell were made. We found only one type of voltage-gated Ca2+ channel with highvoltage activation and slow inactivation characteristics, allowing its classification either as the L or the N type. The channels were susceptible to block by metenkephalin but not to block by nifedipine or to enhancement by Bay K 8644. This combination of pharmacological properties favours their classification as the N type. Preliminary observations on the correlation between calcium currents and transmitter release disclosed a strikingly rapid run-down of the evoked release with unchanged calcium currents and spontaneous release during whole-cell recording, indicating a specific wash-out effect on some link between calcium entry and evoked transmitter release.


1998 ◽  
Vol 80 (6) ◽  
pp. 3233-3246 ◽  
Author(s):  
Shao-Ying Hua ◽  
Dorota A. Raciborska ◽  
William S. Trimble ◽  
Milton P. Charlton

Hua, Shao-Ying, Dorota A. Raciborska, William S. Trimble, and Milton P. Charlton. Different VAMP/synaptobrevin complexes for spontaneous and evoked transmitter release at the crayfish neuromuscular junction. J. Neurophysiol. 80: 3233–3246, 1998. Although vesicle-associated membrane protein (VAMP/synaptobrevin) is essential for evoked neurotransmitter release, its role in spontaneous transmitter release remains uncertain. For instance, many studies show that tetanus toxin (TeNT), which cleaves VAMP, blocks evoked transmitter release but leaves some spontaneous transmitter release. We used recombinant tetanus and botulinum neurotoxin catalytic light chains (TeNT-LC, BoNT/B-LC, and BoNT/D-LC) to examine the role of VAMP in spontaneous transmitter release at neuromuscular junctions (nmj) of crayfish. Injection of TeNT-LC into presynaptic axons removed most of the VAMP immunoreactivity and blocked evoked transmitter release without affecting nerve action potentials or Ca2+ influx. The frequency of spontaneous transmitter release was little affected by the TeNT-LC when the evoked transmitter release had been blocked by >95%. The spontaneous transmitter release left after TeNT-LC treatment was insensitive to increases in intracellular Ca2+. BoNT/B-LC, which cleaves VAMP at the same site as TeNT-LC but uses a different binding site, also blocked evoked release but had minimal effect on spontaneous release. However, BoNT/D-LC, which cleaves VAMP at a different site from the other two toxins but binds to the same position on VAMP as TeNT, blocked both evoked and spontaneous transmitter release at similar rates. The data indicate that different VAMP complexes are employed for evoked and spontaneous transmitter release; the VAMP used in spontaneous release is not readily cleaved by TeNT or BoNT/B. Because the exocytosis that occurs after the action of TeNT cannot be increased by increased intracellular Ca2+, the final steps in neurotransmitter release are Ca2+ independent.


1980 ◽  
Vol 31 (2) ◽  
pp. 227-231 ◽  
Author(s):  
Judi E. Allen ◽  
P.W. Gage ◽  
D.D. Leaver ◽  
A.C.T. Leow

Sign in / Sign up

Export Citation Format

Share Document