calcium currents
Recently Published Documents


TOTAL DOCUMENTS

1130
(FIVE YEARS 52)

H-INDEX

85
(FIVE YEARS 3)

2021 ◽  
Vol 8 ◽  
Author(s):  
Michelle M. Monasky ◽  
Emanuele Micaglio ◽  
Sara D'Imperio ◽  
Carlo Pappone

Ajmaline is an anti-arrhythmic drug that is used to unmask the type-1 Brugada syndrome (BrS) electrocardiogram pattern to diagnose the syndrome. Thus, the disease is defined at its core as a particular response to this or other drugs. Ajmaline is usually described as a sodium-channel blocker, and most research into the mechanism of BrS has centered around this idea that the sodium channel is somehow impaired in BrS, and thus the genetics research has placed much emphasis on sodium channel gene mutations, especially the gene SCN5A, to the point that it has even been suggested that only the SCN5A gene should be screened in BrS patients. However, pathogenic rare variants in SCN5A are identified in only 20–30% of cases, and recent data indicates that SCN5A variants are actually, in many cases, prognostic rather than diagnostic, resulting in a more severe phenotype. Furthermore, the misconception by some that ajmaline only influences the sodium current is flawed, in that ajmaline actually acts additionally on potassium and calcium currents, as well as mitochondria and metabolic pathways. Clinical studies have implicated several candidate genes in BrS, encoding not only for sodium, potassium, and calcium channel proteins, but also for signaling-related, scaffolding-related, sarcomeric, and mitochondrial proteins. Thus, these proteins, as well as any proteins that act upon them, could prove absolutely relevant in the mechanism of BrS.


2021 ◽  
Vol 22 (23) ◽  
pp. 13092
Author(s):  
Michał Abram ◽  
Marcin Jakubiec ◽  
Anna Rapacz ◽  
Szczepan Mogilski ◽  
Gniewomir Latacz ◽  
...  

We report herein a series of water-soluble analogues of previously described anticonvulsants and their detailed in vivo and in vitro characterization. The majority of these compounds demonstrated broad-spectrum anticonvulsant properties in animal seizure models, including the maximal electroshock (MES) test, the pentylenetetrazole-induced seizure model (scPTZ), and the psychomotor 6 Hz (32 mA) seizure model in mice. Compound 14 showed the most robust anticonvulsant activity (ED50 MES = 49.6 mg/kg, ED50 6 Hz (32 mA) = 31.3 mg/kg, ED50scPTZ = 67.4 mg/kg). Notably, it was also effective in the 6 Hz (44 mA) model of drug-resistant epilepsy (ED50 = 63.2 mg/kg). Apart from favorable anticonvulsant properties, compound 14 revealed a high efficacy against pain responses in the formalin-induced tonic pain, the capsaicin-induced neurogenic pain, as well as in the oxaliplatin-induced neuropathic pain in mice. Moreover, compound 14 showed distinct anti-inflammatory activity in the model of carrageenan-induced aseptic inflammation. The mechanism of action of compound 14 is likely complex and may result from the inhibition of peripheral and central sodium and calcium currents, as well as the TRPV1 receptor antagonism as observed in the in vitro studies. This lead compound also revealed beneficial in vitro ADME-Tox properties and an in vivo pharmacokinetic profile, making it a potential candidate for future preclinical development. Interestingly, the in vitro studies also showed a favorable induction effect of compound 14 on the viability of neuroblastoma SH-SY5Y cells.


2021 ◽  
Author(s):  
Pablo Montañés-Agudo ◽  
Simona Casini ◽  
Simona Aufiero ◽  
Auriane C. Ernault ◽  
Ingeborg van der Made ◽  
...  

Eukaryotic genomes contain a tiny subset of ‘minor class’ introns with unique sequence elements that require their own splicing machinery. These minor introns are present in certain gene families with specific functions, such as voltage-gated sodium and voltage-gated calcium channels. Removal of minor introns by the minor spliceosome has been proposed as a post-transcriptional regulatory layer, which remains unexplored in the heart. Here, we investigate whether the minor spliceosome regulates electrophysiological properties of cardiomyocytes by knocking-down the essential minor spliceosome component U6atac in neonatal rat ventricular myocytes. Loss of U6atac led to robust minor intron retention within Scn5a and Cacna1c, resulting in reduced protein levels of Nav1.5 and Cav1.2. Functional consequences were studied through path-clamp analysis, and revealed reduced sodium and L-type calcium currents after loss of U6atac. In conclusion, minor intron splicing modulates voltage-dependent ion channel expression and function in cardiomyocytes. This may be of particular relevance in situations in which minor splicing activity changes, such as in genetic diseases affecting minor spliceosome components, or in acquired diseases in which minor spliceosome components are dysregulated, such as heart failure.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Luisina Chavarría ◽  
Axel Santander ◽  
Romina Cardozo ◽  
Florencia Savio ◽  
Nicolas Mujica ◽  
...  

Lead is a heavy metal pollutant that constitutes frequent exposomes. It is nonbiodegradable and has a nonsafe limit of exposure. It has multisystemic effects, and most of the cardiac effects have been discovered to be indirect. There are strong similarities between Ca2+ and Pb2+ in their chemistry. Because cardiac function is dramatically dependent in extracellular Ca2+, as well as in precise control of intracellular Ca2+, we tested if Pb2+ could antagonize Ca2+-dependent effects in a short amount of time. Acute exposure of isolated hearts showed a negative inotropic effect. In guinea pig isolated cardiomyocytes loaded with a Pb2+-specific dye (Leadmium green), our results showed that there was an associated increment in fluorescence related to extracellular stimulation blocked by 1–5 µM DHP. Calcium currents were partially blocked by extracellular Pb2+, though currents seemed to last longer after a fast inactivation. Charge movement from gating currents was slightly hastened over time, giving an appearance of a slight reduction in the Cav1.2 gating currents. Action potentials were prolonged in Pb2+ compared with Ca2+. In isolated cardiomyocytes loaded with Ca2+-sensitive dyes, Ca2+ variations promoted by extracellular stimuli were affected in space/time. As Pb2+ could interfere with Ca2+-sensitive dyes, we measured contraction of isolated cardiomyocytes under extracellular stimuli in Pb2+. In both Ca2+ dye fluorescence and contractions, Pb2+ disorganizes the pattern of contraction and intracellular Ca2+ homeostasis. Our results suggest that (1) Pb2+ enters to cardiomyocytes through Cav1.2 channels, and (2) once it enters the cell, Pb2+ may substitute Ca2+ in Ca2+-binding proteins. In addition to these direct mechanisms related to Pb2+ competition with Ca2+-binding sites, we cannot discard a direct contribution of Pb2+ redox properties.


2021 ◽  
Author(s):  
Yousra El El Ghaleb ◽  
Nadine J. Ortner ◽  
Wilfried Posch ◽  
Monica L. Fernandez-Quintero ◽  
Wietske E. Tuinte ◽  
...  

The skeletal muscle voltage-gated calcium channel (CaV1.1) primarily functions as voltage sensor for excitation-contraction coupling. Conversely, its ion-conducting function is modulated by multiple mechanisms within the pore-forming α1S subunit and the auxiliary α2δ-1 and γ1 subunits. Particularly, developmentally regulated alternative splicing of exon 29, which inserts 19 amino acids in the extracellular IVS3-S4 loop of CaV1.1a, greatly reduces the current density and shifts the voltage-dependence of activation to positive potentials outside the physiological range. We generated a new HEK293-cell line stably expressing α2δ-1, β3, and STAC3. When the adult (CaV1.1a) and the embryonic (CaV1.1e) splice variants were expressed in these cells, the difference in the voltage-dependence of activation observed in muscle cells was reproduced, but not the reduced current density of CaV1.1a. Only when we further co-expressed the γ1 subunit, the current density of CaV1.1a, but not of CaV1.1e, was reduced by >50 %. In addition, γ1 caused a shift of the voltage-dependence of inactivation to negative voltages in both variants. Thus, the current-reducing effect of γ1, but not its effect on inactivation, is specifically dependent on the inclusion of exon 29 in CaV1.1a. Molecular structure modeling revealed several direct ionic interactions between oppositely charged residues in the IVS3-S4 loop and the γ1 subunit. However, substitution of these residues by alanine, individually or in combination, did not abolish the γ1-dependent reduction of current density, suggesting that structural rearrangements of CaV1.1a induced by inclusion of exon 29 allosterically empower the γ1 subunit to exert its inhibitory action on CaV1.1 calcium currents.


2021 ◽  
Vol 17 (10) ◽  
pp. e1009527
Author(s):  
Martijn C. Sierksma ◽  
J. Gerard G. Borst

At synapses, the pre- and postsynaptic cells get so close that currents entering the cleft do not flow exclusively along its conductance, gcl. A prominent example is found in the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB), where the presynaptic action potential can be recorded in the postsynaptic cell in the form of a prespike. Here, we developed a theoretical framework for ephaptic coupling via the synaptic cleft, and we tested its predictions using the MNTB prespike recorded in voltage-clamp. The shape of the prespike is predicted to resemble either the first or the second derivative of the inverted presynaptic action potential if cleft currents dissipate either mostly capacitively or resistively, respectively. We found that the resistive dissipation scenario provided a better description of the prespike shape. Its size is predicted to scale with the fourth power of the radius of the synapse, explaining why intracellularly recorded prespikes are uncommon in the central nervous system. We show that presynaptic calcium currents also contribute to the prespike shape. This calcium prespike resembled the first derivative of the inverted calcium current, again as predicted by the resistive dissipation scenario. Using this calcium prespike, we obtained an estimate for gcl of ~1 μS. We demonstrate that, for a circular synapse geometry, such as in conventional boutons or the immature calyx of Held, gcl is scale-invariant and only defined by extracellular resistivity, which was ~75 Ωcm, and by cleft height. During development the calyx of Held develops fenestrations. We show that these fenestrations effectively minimize the cleft potentials generated by the adult action potential, which might otherwise interfere with calcium channel opening. We thus provide a quantitative account of the dissipation of currents by the synaptic cleft, which can be readily extrapolated to conventional, bouton-like synapses.


2021 ◽  
Author(s):  
Jeffrey R. McArthur ◽  
Jierong Wen ◽  
Andrew Hung ◽  
Rocio K. Finol-Urdaneta ◽  
David J. Adams

Low voltage-activated calcium currents are mediated by T-type calcium channels CaV3.1, CaV3.2, and CaV3.3, which modulate a variety of physiological processes including sleep, cardiac pace-making, pain, and epilepsy. CaV3 isoforms’ biophysical properties, overlapping expression and lack of subtype-selective pharmacology hinder the determination of their specific physiological roles in health and disease. Notably, CaV3.3’s contribution to normal and pathophysiological function has remained largely unexplored. We have identified Pn3a as the first subtype-selective spider venom peptide inhibitor of CaV3.3, with >100-fold lower potency against the other T-type isoforms. Pn3a modifies CaV3.3 gating through a depolarizing shift in the voltage dependence of activation thus decreasing CaV3.3-mediated currents in the normal range of activation potentials. Paddle chimeras of KV1.7 channels bearing voltage sensor sequences from all four CaV3.3 domains revealed preferential binding of Pn3a to the S3-S4 region of domain II (CaV3.3DII). This novel T-type channel pharmacological site was explored through computational docking simulations of Pn3a into all T-type channel isoforms highlighting it as subtype-specific pharmacophore with therapeutic potential. This research expands our understanding of T-type calcium channel pharmacology and supports the suitability of Pn3a as a molecular tool in the study of the physiological roles of CaV3.3 channels.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2953
Author(s):  
Vanessa Kraft ◽  
Katja Schmitz ◽  
Annett Wilken-Schmitz ◽  
Gerd Geisslinger ◽  
Marco Sisignano ◽  
...  

Trehalose, a sugar from fungi, mimics starvation due to a block of glucose transport and induces Transcription Factor EB- mediated autophagy, likely supported by the upregulation of progranulin. The pro-autophagy effects help to remove pathological proteins and thereby prevent neurodegenerative diseases such as Alzheimer’s disease. Enhancing autophagy also contributes to the resolution of neuropathic pain in mice. Therefore, we here assessed the effects of continuous trehalose administration via drinking water using the mouse Spared Nerve Injury model of neuropathic pain. Trehalose had no effect on drinking, feeding, voluntary wheel running, motor coordination, locomotion, and open field, elevated plus maze, and Barnes Maze behavior, showing that it was well tolerated. However, trehalose reduced nerve injury-evoked nociceptive mechanical and thermal hypersensitivity as compared to vehicle. Trehalose had no effect on calcium currents in primary somatosensory neurons, pointing to central mechanisms of the antinociceptive effects. In IntelliCages, trehalose-treated mice showed reduced activity, in particular, a low frequency of nosepokes, which was associated with a reduced proportion of correct trials and flat learning curves in place preference learning tasks. Mice failed to switch corner preferences and stuck to spontaneously preferred corners. The behavior in IntelliCages is suggestive of sedative effects as a “side effect” of a continuous protracted trehalose treatment, leading to impairment of learning flexibility. Hence, trehalose diet supplements might reduce chronic pain but likely at the expense of alertness.


2021 ◽  
Vol 220 (10) ◽  
Author(s):  
Jörg Isensee ◽  
Marianne van Cann ◽  
Patrick Despang ◽  
Dioneia Araldi ◽  
Katharina Moeller ◽  
...  

Depolarization drives neuronal plasticity. However, whether depolarization drives sensitization of peripheral nociceptive neurons remains elusive. By high-content screening (HCS) microscopy, we revealed that depolarization of cultured sensory neurons rapidly activates protein kinase A type II (PKA-II) in nociceptors by calcium influx through CaV1.2 channels. This effect was modulated by calpains but insensitive to inhibitors of cAMP formation, including opioids. In turn, PKA-II phosphorylated Ser1928 in the distal C terminus of CaV1.2, thereby increasing channel gating, whereas dephosphorylation of Ser1928 involved the phosphatase calcineurin. Patch-clamp and behavioral experiments confirmed that depolarization leads to calcium- and PKA-dependent sensitization of calcium currents ex vivo and local peripheral hyperalgesia in the skin in vivo. Our data suggest a local activity-driven feed-forward mechanism that selectively translates strong depolarization into further activity and thereby facilitates hypersensitivity of nociceptor terminals by a mechanism inaccessible to opioids.


2021 ◽  
Vol 14 ◽  
Author(s):  
David Oestreicher ◽  
Maria Magdalena Picher ◽  
Vladan Rankovic ◽  
Tobias Moser ◽  
Tina Pangrsic

Clinical management of auditory synaptopathies like other genetic hearing disorders is currently limited to the use of hearing aids or cochlear implants. However, future gene therapy promises restoration of hearing in selected forms of monogenic hearing impairment, in which cochlear morphology is preserved over a time window that enables intervention. This includes non-syndromic autosomal recessive hearing impairment DFNB93, caused by defects in the CABP2 gene. Calcium-binding protein 2 (CaBP2) is a potent modulator of inner hair cell (IHC) voltage-gated calcium channels CaV1.3. Based on disease modeling in Cabp2–/– mice, DFNB93 hearing impairment has been ascribed to enhanced steady-state inactivation of IHC CaV1.3 channels, effectively limiting their availability to trigger synaptic transmission. This, however, does not seem to interfere with cochlear development and does not cause early degeneration of hair cells or their synapses. Here, we studied the potential of a gene therapeutic approach for the treatment of DFNB93. We used AAV2/1 and AAV-PHP.eB viral vectors to deliver the Cabp2 coding sequence into IHCs of early postnatal Cabp2–/– mice and assessed the level of restoration of hair cell function and hearing. Combining in vitro and in vivo approaches, we observed high transduction efficiency, and restoration of IHC CaV1.3 function resulting in improved hearing of Cabp2–/– mice. These preclinical results prove the feasibility of DFNB93 gene therapy.


Sign in / Sign up

Export Citation Format

Share Document