neuromuscular junctions
Recently Published Documents


TOTAL DOCUMENTS

1509
(FIVE YEARS 239)

H-INDEX

91
(FIVE YEARS 7)

Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 53
Author(s):  
Hodan Ibrahim ◽  
Jacquie Maignel ◽  
Fraser Hornby ◽  
Donna Daly ◽  
Matthew Beard

Botulinum neurotoxin (BoNT/A) is an FDA and NICE approved second-line treatment for overactive bladder (OAB) in patients either not responsive or intolerant to anti-cholinergic drugs. BoNT/A acts to weaken muscle contraction by blocking release of the neurotransmitter acetyl choline (ACh) at neuromuscular junctions. However, this biological activity does not easily explain all the observed effects in clinical and non-clinical studies. There are also conflicting reports of expression of the BoNT/A protein receptor, SV2, and intracellular target protein, SNAP-25, in the urothelium and bladder. This review presents the current evidence of BoNT/A’s effect on bladder sensation, potential mechanisms by which it might exert these effects and discusses recent advances in understanding the action of BoNT in bladder tissue.


2022 ◽  
Vol 13 ◽  
Author(s):  
Joseph A. Szule

This report integrates knowledge of in situ macromolecular structures and synaptic protein biochemistry to propose a unified hypothesis for the regulation of certain vesicle trafficking events (i.e., docking, priming, Ca2+-triggering, and membrane fusion) that lead to neurotransmitter secretion from specialized “active zones” of presynaptic axon terminals. Advancements in electron tomography, to image tissue sections in 3D at nanometer scale resolution, have led to structural characterizations of a network of different classes of macromolecules at the active zone, called “Active Zone Material’. At frog neuromuscular junctions, the classes of Active Zone Material macromolecules “top-masts”, “booms”, “spars”, “ribs” and “pins” direct synaptic vesicle docking while “pins”, “ribs” and “pegs” regulate priming to influence Ca2+-triggering and membrane fusion. Other classes, “beams”, “steps”, “masts”, and “synaptic vesicle luminal filaments’ likely help organize and maintain the structural integrity of active zones. Extensive studies on the biochemistry that regulates secretion have led to comprehensive characterizations of the many conserved proteins universally involved in these trafficking events. Here, a hypothesis including a partial proteomic atlas of Active Zone Material is presented which considers the common roles, binding partners, physical features/structure, and relative positioning in the axon terminal of both the proteins and classes of macromolecules involved in the vesicle trafficking events. The hypothesis designates voltage-gated Ca2+ channels and Ca2+-gated K+ channels to ribs and pegs that are connected to macromolecules that span the presynaptic membrane at the active zone. SNARE proteins (Syntaxin, SNAP25, and Synaptobrevin), SNARE-interacting proteins Synaptotagmin, Munc13, Munc18, Complexin, and NSF are designated to ribs and/or pins. Rab3A and Rabphillin-3A are designated to top-masts and/or booms and/or spars. RIM, Bassoon, and Piccolo are designated to beams, steps, masts, ribs, spars, booms, and top-masts. Spectrin is designated to beams. Lastly, the luminal portions of SV2 are thought to form the bulk of the observed synaptic vesicle luminal filaments. The goal here is to help direct future studies that aim to bridge Active Zone Material structure, biochemistry, and function to ultimately determine how it regulates the trafficking events in vivo that lead to neurotransmitter secretion.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Zuzanna Kuczynska ◽  
Erkan Metin ◽  
Michal Liput ◽  
Leonora Buzanska

The peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a well-known transcriptional coactivator involved in mitochondrial biogenesis. PGC-1α is implicated in the pathophysiology of many neurodegenerative disorders; therefore, a deep understanding of its functioning in the central nervous system may lead to the development of new therapeutic strategies. The central nervous system (CNS)-specific isoforms of PGC-1α have been recently identified, and many functions of PGC-1α are assigned to the particular cell types of the central nervous system. In the mice CNS, deficiency of PGC-1α disturbed viability and functioning of interneurons and dopaminergic neurons, followed by alterations in inhibitory signaling and behavioral dysfunction. Furthermore, in the ALS rodent model, PGC-1α protects upper motoneurons from neurodegeneration. PGC-1α is engaged in the generation of neuromuscular junctions by lower motoneurons, protection of photoreceptors, and reduction in oxidative stress in sensory neurons. Furthermore, in the glial cells, PGC-1α is essential for the maturation and proliferation of astrocytes, myelination by oligodendrocytes, and mitophagy and autophagy of microglia. PGC-1α is also necessary for synaptogenesis in the developing brain and the generation and maintenance of synapses in postnatal life. This review provides an outlook of recent studies on the role of PGC-1α in various cells in the central nervous system.


Author(s):  
Kashif Abbas ◽  
Kashif Abbas ◽  
Kashif Abbas ◽  
Kashif Abbas

Nootropic drugs are the class of drugs or supplements that are claimed to enhance cognitive functions, specifically executive functions, memory and creativity in healthy individual. They are sometime referred as cognitive enhancers or smart drugs as they are associated with memory improvement functioning. Some of them are well known drugs and clinically approved by the Food and Drug Administration (FDA). All metabolic reactions are purely dependent on enzymatic actions as they play a very important role in regulating and maintaining most of the biological responses and various processes. An enzyme Acetylcholinesterase (AChE) seems to play an essential role in the conduction of cholinergic brain synapses and neuromuscular junctions. There have been different nootropic drugs identified and approved for curing neurodegenerative disorders such as Alzheimer, Parkinson and Huntington's disease. Their binding efficiency and energy have been well studied an established by using the in-silico docking tools. There are different docking tools available today for analysis of molecules such as PyRx, Auto dock and schrodinger suite. The advent of these tools is being widely used by the pharmaceutical industries for the virtual screening of the formulated drugs against the desired target molecule. It has made the drug formulation process more time efficient and cost effective. Thus, an in-silico approach has been widely accepted for drug discovery and its design.


Aging Cell ◽  
2021 ◽  
Author(s):  
Madoka Ikemoto‐Uezumi ◽  
Heying Zhou ◽  
Tamaki Kurosawa ◽  
Yuki Yoshimoto ◽  
Masashi Toyoda ◽  
...  

2021 ◽  
Author(s):  
Margarita Dinamarca ◽  
Laura Colombo ◽  
Urszula Brykczynska ◽  
Amandine Grimm ◽  
Natalia Tousiaki ◽  
...  

Abstract A potential explanation for the spatiotemporal accumulation of pathological lesions in the brain of patients with neurodegenerative protein misfolding diseases (PMDs) is cell-to-cell transmission of aggregation-prone, misfolded proteins. Little is known about central to peripheral transmission and its contribution to pathology. We show that transmission of Huntington’s disease- (HD-) associated mutant HTT exon 1 (mHTTEx1) occurs across the neuromuscular junctions in human iPSC cultures and in vivo in wild-type mice. We found that transmission is an active and dynamic process, that happens prior to aggregate formation and is regulated by synaptic activity. Furthermore, we find that transmitted mHTTEx1 causes HD-relevant pathology at a molecular and functional level in human muscle cells, even in the presence of ubiquitous expression mHTTEx1. With this work we uncover a casual-link between mHTTEx1 synaptic transmission and pathology, highlighting the therapeutic potential in blocking toxic protein transmission in PMDs.


2021 ◽  
Author(s):  
G. Murray ◽  
P. Bais ◽  
C. Hatton ◽  
A.L.D. Tadenev ◽  
K.H. Morelli ◽  
...  

AbstractNADK2 encodes the mitochondrial isoform of NAD Kinase, which phosphorylates nicotinamide adenine dinucleotide (NAD). Rare recessive mutations in human NADK2 are associated with a syndromic neurological mitochondrial disease that includes metabolic changes such as hyperlysinemia and 2,4 dienoyl CoA reductase (DECR) deficiency. However, the full pathophysiology resulting from NADK2 deficiency is not known. Here we describe two chemically-induced mouse mutations in Nadk2, S326L and S330P, which cause a severe neuromuscular disease and shorten lifespan. The S330P allele was characterized in detail and shown to have marked denervation of neuromuscular junctions by 5 weeks of age and muscle atrophy by 11 weeks of age. Cerebellar Purkinje cells also showed progressive degeneration in this model. Transcriptome profiling on brain and muscle was performed at early and late disease stages. In addition, metabolomic profiling was performed on brain, muscle, liver, and spinal cord at the same ages. Combined transcriptomic and metabolomic analyses identified hyperlysinemia, DECR deficiency, and generalized metabolic dysfunction in Nadk2 mutant mice, indicating relevance to the human disease. We compared findings from the Nadk model to equivalent RNAseq and metabolomic datasets from a mouse model of infantile neuroaxonal dystrophy, caused by recessive mutations in Pla2g6. This enabled us to identify disrupted biological processes that are common between these mouse models of neurological disease, such as translation, and those processes that are gene-specific such as glycolysis and acetylcholine binding. These findings improve our understanding of the pathophysiology of both Nadk2 and Pla2g6 mutations, as well as pathways common to neuromuscular/neurodegenerative diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Núria Gaja-Capdevila ◽  
Neus Hernández ◽  
Xavier Navarro ◽  
Mireia Herrando-Grabulosa

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder characterized by the death of motoneurons (MNs) with a poor prognosis. There is no available cure, thus, novel therapeutic targets are urgently needed. Sigma-1 receptor (Sig-1R) has been reported as a target to treat experimental models of degenerative diseases and, importantly, mutations in the Sig-1R gene cause several types of motoneuron disease (MND). In this study we compared the potential therapeutic effect of three Sig-1R ligands, the agonists PRE-084 and SA4503 and the antagonist BD1063, in the SOD1G93A mouse model of ALS. Pharmacological administration was from 8 to 16 weeks of age, and the neuromuscular function and disease progression were evaluated using nerve conduction and rotarod tests. At the end of follow up (16 weeks), samples were harvested for histological and molecular analyses. The results showed that PRE-084, as well as BD1063 treatment was able to preserve neuromuscular function of the hindlimbs and increased the number of surviving MNs in the treated female SOD1G93A mice. SA4503 tended to improve motor function and preserved neuromuscular junctions (NMJ), but did not improve MN survival. Western blot analyses revealed that the autophagic flux and the endoplasmic reticulum stress, two pathways implicated in the physiopathology of ALS, were not modified with Sig-1R treatments in SOD1G93A mice. In conclusion, Sig-1R ligands are promising tools for ALS treatment, although more research is needed to ascertain their mechanisms of action.


Author(s):  
Martina Marinello ◽  
Jérémie Cosette ◽  
Caroline Bogni ◽  
Jérôme Denard ◽  
Daniel Stockholm ◽  
...  

2021 ◽  
Author(s):  
Oriane Turrel ◽  
Niraja Ramesh ◽  
Marc J.F. Escher ◽  
Stephan J Sigrist

Establishing a detailed understanding of how the distinct forms of synaptic plasticity spatio-temporally engage into the initial storage and subsequent consolidation of memories remains a fundamental challenge of neuroscience. In addition to the better understood postsynaptic plasticity, different forms of presynaptic plasticity are widely expressed in mammalian brains and apparently operate along Hebbian or homeostatic rules. Their behavioral relevance remains enigmatic, however. Lately, acute upregulation of active zone (AZ) scaffold protein BRP and release factor Unc13A via specific axonal transport factors were shown to mediate stable expression of presynaptic homeostatic plasticity (PHP) at Drosophila neuromuscular junctions (NMJs). We here demonstrate that AZ scaling processes are specifically needed for stable expression of both, NMJ PHP as well as aversive olfactory mid-term memory within intrinsic neurons of the Drosophila mushroom body (MB). We first demonstrate that AZ upscaling via BRP is specifically needed for expression but not induction of NMJ homeostatic plasticity, thus establishing a direct temporal plasticity sequence of molecularly distinct AZ remodeling steps. Notably, when we reduced BRP and associated transport factors in MB intrinsic neurons, short-term memory persisted but robust deficits in stable memory expression for a few hours after conditioning were observed. In contrast, AZ release site protein RIM-BP affecting PHP induction was additionally needed for successful formation of short-term memory. Taken together, our data establish a specific role of homeostatic presynaptic long-term plasticity for memory consolidation. Such homeostatic refinement processes might well be needed to successfully integrate and display synaptic engrams constituting intermediary term memories.


Sign in / Sign up

Export Citation Format

Share Document