Premotor neurons projecting simultaneously to two orofacial motor nuclei by sending their branched axons. A study with a fluorescent retrograde double-labeling technique in the rat

1993 ◽  
Vol 152 (1-2) ◽  
pp. 29-32 ◽  
Author(s):  
Yun-Qing Li ◽  
Masahiko Takada ◽  
Noboru Mizuno
1999 ◽  
Vol 254 (4) ◽  
pp. 490-495 ◽  
Author(s):  
Maria Luisa Lucchi ◽  
Anna Maria Barazzoni ◽  
Paolo Clavenzani ◽  
Roberto Chiocchetti ◽  
Paolo Berardinelli ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jun Takatoh ◽  
Jae Hong Park ◽  
Jinghao Lu ◽  
Shun Li ◽  
P M Thompson ◽  
...  

Premotor circuits in the brainstem project to pools of orofacial motoneurons to execute essential motor action such as licking, chewing, breathing, and in rodent, whisking. Previous transsynaptic tracing studies only mapped orofacial premotor circuits in neonatal mice, but the adult circuits remain unknown as a consequence of technical difficulties. Here we developed a three-step monosynaptic transsynaptic tracing strategy to identify premotor neurons controlling vibrissa, tongue protrusion, and jaw-closing muscles in the adult mouse. We registered these different groups of premotor neurons onto the Allen mouse brain common coordinate framework (CCF) and consequently generated a combined 3D orofacial premotor atlas, revealing unique spatial organizations of distinct premotor circuits. We further uncovered premotor neurons that simultaneously innervate multiple motor nuclei and, consequently, are likely to coordinate different muscles involved in the same orofacial motor actions. Our method for tracing adult premotor circuits and registering to Allen CCF is generally applicable and should facilitate the investigations of motor controls of diverse behaviors.


2021 ◽  
Author(s):  
Jun Takatoh ◽  
Jae Hong Park ◽  
Jinghao Lu ◽  
Shun Li ◽  
P. M. Thompson ◽  
...  

AbstractPremotor circuits in the brainstem control pools of orofacial motoneurons to execute essential functions such as drinking, eating, breathing, and in rodent, whisking. Previous transsynaptic tracing studies only mapped orofacial premotor circuits in neonatal mice but the adult circuits remain unknown due to technical difficulties. Here we developed a three-step monosynaptic transsynaptic tracing strategy to identify premotor neurons controlling whisker, tongue protrusion, and jaw-closing muscles in the adult. We registered these different groups of premotor neurons onto the Allen mouse brain common coordinate framework (CCF) and consequently generated a combined 3D orofacial premotor atlas, revealing unique spatial organizations of distinct premotor circuits. We also uncovered premotor neurons simultaneously innervating multiple motor nuclei and, thus, likely coordinating different muscles involved in the same orofacial behaviors. Our method for tracing adult premotor circuits and registering to Allen CCF is generally applicable and should facilitate the investigations of motor controls of diverse behaviors.


Author(s):  
Margaret Hukee

Gold labeling of two antigens (double labeling) is often done on two section surfaces separated by section thickness. Whether labeling is done on both sides of the same section or on two parallel surfaces separated by section thickness (PSSST), comparable results are dependent on an equal number of epitopes being exposed at each surface. We propose a method to study protein labeling within the same field of proteins, by examining two directly adjacent surfaces that were split during sectioning. The number of labeling sites on adjacent surfaces (AS) were compared to sites on PSSST surfaces in individual bacteria.Since each bacteria needed to be recognizable in all three section surfaces, one-hole grids were used for labeling. One-hole grids require a supporting membrane and excessive handling during labeling often ruptures the membrane. To minimize handling, a labeling chamber was designed that is inexpensive, disposable, minimizes contamination, and uses a minimal amount of solution.


Sign in / Sign up

Export Citation Format

Share Document