adult mouse
Recently Published Documents


TOTAL DOCUMENTS

2870
(FIVE YEARS 411)

H-INDEX

135
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Chih-Wei Hsu ◽  
Juan Cerda ◽  
Jason M Kirk ◽  
Williamson D. Turner ◽  
Tara L. Rasmussen ◽  
...  

Tissue clearing for whole organ cell profiling has revolutionized biology and imaging for exploration of organs in three-dimensional space without compromising tissue architecture. But complicated, laborious procedures, or expensive equipment, as well as the use of hazardous, organic solvents prevents the widespread adoption of these methods. Here we report a simple and rapid tissue clearing method, EZ Clear, that can clear whole adult mouse organs in 48 hours in just three simple steps. Samples stay at room temperature and remain hydrated throughout the clearing process, preserving endogenous and synthetic fluorescence, without altering sample size. After wholemount clearing and imaging, EZ Cleared samples can be further processed for downstream embedding and cryosectioning followed by standard histology or immunostaining, without loss of endogenous or synthetic fluorescence signal. Overall, the simplicity, speed, and flexibility of EZ Clear make it easy to adopt and apply to diverse approaches in biomedical research.


Author(s):  
Miguel V. Guerra ◽  
Matías I. Cáceres ◽  
Andrea Herrera-Soto ◽  
Sebastián B. Arredondo ◽  
Manuel Varas-Godoy ◽  
...  

In the dentate gyrus of the adult hippocampus new neurons are generated from neural precursor cells through different stages including proliferation and differentiation of neural progenitor cells and maturation of newborn neurons. These stages are controlled by the expression of specific transcription factors and epigenetic mechanisms, which together orchestrate the progression of the neurogenic process. However, little is known about the involvement of histone posttranslational modifications, a crucial epigenetic mechanism in embryonic neurogenesis that regulates fate commitment and neuronal differentiation. During embryonic development, the repressive modification trimethylation of histone H3 on lysine 9 (H3K9me3) contributes to the cellular identity of different cell-types. However, the role of this modification and its H3K9 methyltransferases has not been elucidated in adult hippocampal neurogenesis. We determined that during the stages of neurogenesis in the adult mouse dentate gyrus and in cultured adult hippocampal progenitors (AHPs), there was a dynamic change in the expression and distribution of H3K9me3, being enriched at early stages of the neurogenic process. A similar pattern was observed in the hippocampus for the dimethylation of histone H3 on lysine 9 (H3K9me2), another repressive modification. Among H3K9 methyltransferases, the enzymes Suv39h1 and Suv39h2 exhibited high levels of expression at early stages of neurogenesis and their expression decreased upon differentiation. Pharmacological inhibition of these enzymes by chaetocin in AHPs reduced H3K9me3 and concomitantly decreased neuronal differentiation while increasing proliferation. Moreover, Suv39h1 and Suv39h2 knockdown in newborn cells of the adult mouse dentate gyrus by retrovirus-mediated RNA interference impaired neuronal differentiation of progenitor cells. Our results indicate that H3K9me3 and H3K9 methyltransferases Suv39h1 and Suv39h2 are critically involved in the regulation of adult hippocampal neurogenesis by controlling the differentiation of neural progenitor cells.


2022 ◽  
Vol 14 ◽  
Author(s):  
Wenyan Li ◽  
Yizhou Quan ◽  
Mingqian Huang ◽  
Wei Wei ◽  
Yilai Shu ◽  
...  

The study of an adult mammalian auditory system, such as regeneration, has been hampered by the lack of an in vitro system in which hypotheses can be tested efficiently. This is primarily due to the fact that the adult inner ear is encased in the toughest bone of the body, whereas its removal leads to the death of the sensory epithelium in culture. We hypothesized that we could take advantage of the integral cochlear structure to maintain the overall inner ear architecture and improve sensory epithelium survival in culture. We showed that by culturing adult mouse cochlea with the (surrounding) bone intact, the supporting cells (SCs) survived and almost all hair cells (HCs) degenerated. To evaluate the utility of the explant culture system, we demonstrated that the overexpression of Atoh1, an HC fate-determining factor, is sufficient to induce transdifferentiation of adult SCs to HC-like cells (HCLCs). Transdifferentiation-derived HCLCs resemble developmentally young HCs and are able to attract adult ganglion neurites. Furthermore, using a damage model, we showed that degenerated adult ganglions respond to regenerated HCLCs by directional neurite outgrowth that leads to HCLC-neuron contacts, strongly supporting the intrinsic properties of the HCLCs in establishing HCLC-neuron connections. The adult whole cochlear explant culture is suitable for diverse studies of the adult inner ear including regeneration, HC-neuron pathways, and inner ear drug screening.


2022 ◽  
Vol 17 (6) ◽  
pp. 1286
Author(s):  
ElizabethD Kirby ◽  
JoshuaD Rieskamp ◽  
Patricia Sarchet ◽  
BryonM Smith

2021 ◽  
Vol 2 (4) ◽  
pp. L10-L12
Author(s):  
R Appeltant ◽  
B V Adeniran ◽  
S A Williams

Lay summary To visualise tissues to determine the presence of disease or simply to understand anatomy, it is important to preserve fresh tissue. Fixatives are chemical solutions that preserve tissues to enable microscopic evaluation. However, some fixatives introduce artefact such as shrinkage of cells. Recently, a new fixative, Form-Acetic, was developed that is superior for preserving the structure of ovary tissue and allows investigation of ovary composition. One component of the ovary is hyaluronic acid (HA), which plays a crucial role in normal ovary function and fertility. Importantly, HA is sensitive to different fixative solutions. Therefore, it is meaningful to verify whether Form-Acetic is suitable for detecting HA. In this study, adult mouse ovaries were fixed in Form-Acetic and HA was detected. All HA-containing structures in the ovary were clearly distinguished which proves that the novel fixative allows the detection of HA.


2021 ◽  
Author(s):  
Irene de Lázaro ◽  
Christina M Tringides ◽  
Tiara L Orejon-Sanchez ◽  
David Mooney

Partial cell reprogramming has been demonstrated in certain mouse tissues by in situ overexpression of Oct3/4, Klf4, Sox2 and cMyc (OKSM) transcription factors, and can trigger rejuvenation and/or augment regeneration of aged or injured tissues. In vivo reprogramming of adult mouse cardiomyocytes has been elusive, but success could overcome the lack of endogenous cardiomyocyte turnover that contributes to the poor resolution of heart disease. Here, we exploited cell type-specific Cre recombination and conditional, doxycycline-inducible, control of gene expression to generate cardiomyocyte-specific, inducible, reprogrammable mice. Eighteen days of doxycycline-induced OKSM expression in this model established a gene expression program characteristic of the pluripotent state and triggered the generation of teratomas of confirmed cardiomyocyte origin. These findings confirm that OKSM reprograms adult mouse cardiomyocytes to pluripotency and will enable studies of the contribution of reprogrammed cardiomyocytes to cardiac regeneration.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ragini Phansalkar ◽  
Josephine Krieger ◽  
Mingming Zhao ◽  
Sai Saroja Kolluru ◽  
Robert C Jones ◽  
...  

Most cell fate trajectories during development follow a diverging, tree-like branching pattern, but the opposite can occur when distinct progenitors contribute to the same cell type. During this convergent differentiation, it is unknown if cells ‘remember’ their origins transcriptionally or whether this influences cell behavior. Most coronary blood vessels of the heart develop from two different progenitor sources—the endocardium (Endo) and sinus venosus (SV)—but whether transcriptional or functional differences related to origin are retained is unknown. We addressed this by combining lineage tracing with single-cell RNA sequencing (scRNAseq) in embryonic and adult mouse hearts. Shortly after coronary development begins, capillary endothelial cells (ECs) transcriptionally segregated into two states that retained progenitor-specific gene expression. Later in development, when the coronary vasculature is well established but still remodeling, capillary ECs again segregated into two populations, but transcriptional differences were primarily related to tissue localization rather than lineage. Specifically, ECs in the heart septum expressed genes indicative of increased local hypoxia and decreased blood flow. Adult capillary ECs were more homogeneous with respect to both lineage and location. In agreement, SV- and Endo-derived ECs in adult hearts displayed similar responses to injury. Finally, scRNAseq of developing human coronary vessels indicated that the human heart followed similar principles. Thus, over the course of development, transcriptional heterogeneity in coronary ECs is first influenced by lineage, then by location, until heterogeneity declines in the homeostatic adult heart. These results highlight the plasticity of ECs during development, and the validity of the mouse as a model for human coronary development.


2021 ◽  
Vol 4 (4) ◽  
pp. 86
Author(s):  
Md. Obayed Raihan ◽  
Brett A. McGregor ◽  
Nathan A. Velaris ◽  
Afrina Brishti ◽  
Junguk Hur ◽  
...  

Microglia, the resident brain immune effectors cells, show dynamic activation level changes for most neuropsychiatric diseases, reflecting their complex regulatory function and potential as a therapeutic target. Emerging single-cell molecular biology studies are used to investigate the genetic modification of individual cells to better understand complex gene regulatory pathways. Although multiple protocols for microglia isolation from adult mice are available, it is always challenging to get sufficient purified microglia from a single brain for simultaneous DNA and RNA extraction for subsequent downstream analysis. Moreover, for data comparison between treated and untreated groups, standardized cell isolation techniques are essential to decrease variability. Here, we present a combined method of microglia isolation from a single adult mouse brain, using a magnetic bead-based column separation technique, and a column-based extraction of purified DNA-RNA from the isolated microglia for downstream application. Our current method provides step-by-step instructions accompanied by visual explanations of important steps for isolating DNA-RNA simultaneously from a highly purified microglia population.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mergim Ramosaj ◽  
Sofia Madsen ◽  
Vanille Maillard ◽  
Valentina Scandella ◽  
Daniel Sudria-Lopez ◽  
...  

AbstractNeural stem/progenitor cells (NSPCs) generate new neurons throughout adulthood. However, the underlying regulatory processes are still not fully understood. Lipid metabolism plays an important role in regulating NSPC activity: build-up of lipids is crucial for NSPC proliferation, whereas break-down of lipids has been shown to regulate NSPC quiescence. Despite their central role for cellular lipid metabolism, the role of lipid droplets (LDs), the lipid storing organelles, in NSPCs remains underexplored. Here we show that LDs are highly abundant in adult mouse NSPCs, and that LD accumulation is significantly altered upon fate changes such as quiescence and differentiation. NSPC proliferation is influenced by the number of LDs, inhibition of LD build-up, breakdown or usage, and the asymmetric inheritance of LDs during mitosis. Furthermore, high LD-containing NSPCs have increased metabolic activity and capacity, but do not suffer from increased oxidative damage. Together, these data indicate an instructive role for LDs in driving NSPC behaviour.


iScience ◽  
2021 ◽  
pp. 103693
Author(s):  
Gopireddy R. Reddy ◽  
Lu Ren ◽  
Phung N. Thai ◽  
Jessica L. Caldwell ◽  
Manuela Zaccolo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document