Gold labeling of teichoic acid on adjacent surfaces of staphylococcus aureus

Author(s):  
Margaret Hukee

Gold labeling of two antigens (double labeling) is often done on two section surfaces separated by section thickness. Whether labeling is done on both sides of the same section or on two parallel surfaces separated by section thickness (PSSST), comparable results are dependent on an equal number of epitopes being exposed at each surface. We propose a method to study protein labeling within the same field of proteins, by examining two directly adjacent surfaces that were split during sectioning. The number of labeling sites on adjacent surfaces (AS) were compared to sites on PSSST surfaces in individual bacteria.Since each bacteria needed to be recognizable in all three section surfaces, one-hole grids were used for labeling. One-hole grids require a supporting membrane and excessive handling during labeling often ruptures the membrane. To minimize handling, a labeling chamber was designed that is inexpensive, disposable, minimizes contamination, and uses a minimal amount of solution.

1968 ◽  
Vol 107 (6) ◽  
pp. 817-821 ◽  
Author(s):  
A. M. James ◽  
J. E. Brewer

1. pH–mobility curves of various laboratory strains of Staphylococcus aureus are non-sigmoid in shape, and all pass through a maximum value in the range pH4–5. 2. The maxima in the curves are not due to incomplete washing of the cells, adsorption of buffer components or irreversible surface damage. 3. Mild oxidation of the cell-surface teichoic acid with sodium metaperiodate gives cells that have typical sigmoid pH–mobility curves, characteristic of either a simple carboxyl surface or a mixed carboxyl–amino surface. 4. The results are discussed in terms of a pH-dependent change in the configuration of the teichoic acid molecules at the surface.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kristoffer T. Bæk ◽  
Camilla Jensen ◽  
Maya A. Farha ◽  
Tobias K. Nielsen ◽  
Ervin Paknejadi ◽  
...  

Staphylococcus aureus is a leading cause of bacterial infections world-wide. Staphylococcal infections are preferentially treated with β-lactam antibiotics, however, methicillin-resistant S. aureus (MRSA) strains have acquired resistance to this superior class of antibiotics. We have developed a growth-based, high-throughput screening approach that directly identifies cell wall synthesis inhibitors capable of reversing β-lactam resistance in MRSA. The screen is based on the finding that S. aureus mutants lacking the ClpX chaperone grow very poorly at 30°C unless specific steps in teichoic acid synthesis or penicillin binding protein (PBP) activity are inhibited. This property allowed us to exploit the S. aureus clpX mutant as a unique screening tool to rapidly identify biologically active compounds that target cell wall synthesis. We tested a library of ∼50,000 small chemical compounds and searched for compounds that inhibited growth of the wild type while stimulating growth of the clpX mutant. Fifty-eight compounds met these screening criteria, and preliminary tests of 10 compounds identified seven compounds that reverse β-lactam resistance of MRSA as expected for inhibitors of teichoic acid synthesis. The hit compounds are therefore promising candidates for further development as novel combination agents to restore β-lactam efficacy against MRSA.


2008 ◽  
Vol 24 (3) ◽  
pp. 212-217 ◽  
Author(s):  
L. M. Skivka ◽  
M. P. Rudik ◽  
V. V. Pozur ◽  
N. V. Senchilo ◽  
V. K. Pozur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document