scholarly journals Asymptotic expansions for the maximum of random number of random variables

1994 ◽  
Vol 51 (2) ◽  
pp. 297-305 ◽  
Author(s):  
S.Yu. Novak
2011 ◽  
Vol 52 ◽  
pp. 359-364
Author(s):  
Algimantas Bikelis ◽  
Kazimieras Padvelskis ◽  
Pranas Vaitkus

Althoug Chebyshev [3] and Edeworth [5] had conceived of the formal expansions for distribution of sums of independent random variables, but only in Cramer’s work [4] was laid a proper foundation of this problem. In the case when random variables are lattice Esseen get the asymptotic expansion in a new different form. Here we extend this problem for quasi-lattice random variables.  


2007 ◽  
Vol 39 (4) ◽  
pp. 1070-1097 ◽  
Author(s):  
J. Blanchet ◽  
P. Glynn

Consider a sequence X = (Xn: n ≥ 1) of independent and identically distributed random variables, and an independent geometrically distributed random variable M with parameter p. The random variable SM = X1 + ∙ ∙ ∙ + XM is called a geometric sum. In this paper we obtain asymptotic expansions for the distribution of SM as p ↘ 0. If EX1 > 0, the asymptotic expansion is developed in powers of p and it provides higher-order correction terms to Renyi's theorem, which states that P(pSM > x) ≈ exp(-x/EX1). Conversely, if EX1 = 0 then the expansion is given in powers of √p. We apply the results to obtain corrected diffusion approximations for the M/G/1 queue. These expansions follow in a unified way as a consequence of new uniform renewal theory results that are also developed in this paper.


1977 ◽  
Vol 22 (1) ◽  
pp. 569-571 ◽  
Author(s):  
Kh. Batirov ◽  
D. V. Manevich ◽  
S. V. Nagaev

1973 ◽  
Vol 10 (01) ◽  
pp. 122-129 ◽  
Author(s):  
Janos Galambos

The asymptotic distribution of the maximum of a random number of random variables taken from the model below is shown to be the same as when their number is a fixed integer. Applications are indicated to determine the service time of a system of a large number of components, when the number of components to be serviced is not known in advance. A much slighter assumption is made than the stochastic independence of the periods of time needed for servicing the different components. In our model we assume that the random variables can be grouped into a number of subcollections with the following properties: (i) the random variables taken from different groups are asymptotically independent, (ii) the largest number of elements in a subgroup is of smaller order than the overall number of random variables. In addition, a very mild assumption is made for the joint distribution of elements from the same group.


Sign in / Sign up

Export Citation Format

Share Document