Somatic cell hybridization in vivo and in vitro in relation to the metastatic phenotype

1985 ◽  
Vol 823 (2) ◽  
pp. 81-110 ◽  
Author(s):  
A LAGARDE ◽  
R KERBEL
1982 ◽  
Vol 142 (2) ◽  
pp. 261-272 ◽  
Author(s):  
Jeanne Bentley Lawrence ◽  
Stephen F. Konieczny ◽  
Maria Shaffer ◽  
Annette W. Coleman ◽  
John R. Coleman

Genomics ◽  
1993 ◽  
Vol 18 (2) ◽  
pp. 426-428 ◽  
Author(s):  
Robert S. Sparkes ◽  
Rehwa H. Lee ◽  
Toshi Shinohara ◽  
Cheryl M. Craft ◽  
Tracy Kojis ◽  
...  

2006 ◽  
Vol 18 (2) ◽  
pp. 131
Author(s):  
K. Kaneyama ◽  
S. Kobayashi ◽  
S. Matoba ◽  
Y. Hashiyada ◽  
K. Imai ◽  
...  

Although many studies have been conducted on somatic cell nuclear transfer, there are only a few reports on cryopreservation of reconstructed embryos after nuclear transplantation. The objective of this study was to examine in vitro or in vivo development of vitrified blastocysts obtained by nuclear transfer. Nuclear transfer was carried out according to the procedure of Goto et al. (1999 Anim. Sci. J. 70, 243–245), and conducted using abattoir-derived oocytes and cumulus cells derived by ovum pickup from Holstein and Japanese Black cows. Embryos were vitrified as described by Saito et al. (1998 Cryobiol. Cryotech. 43, 34–39). The vitrification solution (GESX solution) was based on Dulbecco's PBS containing 20% glycerol (GL), 20% ethylene glycol (EG), 0.3 M sucrose (Suc), 0.3 M xylose (Xyl), and 3% polyethylene glycol (PEG). The blastocysts were equilibrated in three steps, with 10% GL, 0.1 M Suc, 0.1 M Xyl, and 1% PEG for 5 min (1); with 10% GL, 10% EG, 0.2 M Suc, 0.2 M Xyl, and 2% PEG for 5 min (2) and GESX solution (3). After transfer to GESX, equilibrated embryos were loaded to 0.25-mL straws and plunged into liquid nitrogen for 1 min. The vitrified blastocysts were warmed in water (20°C) and diluted in 0.5 M and 0.25 M sucrose for 5 min each. Equilibration and dilution procedures were conducted at room temperature (25–26°C). After dilution, the vitrified blastocysts were cultured in TCM-199 supplemented with 20% fetal calf serum and 0.1 mM β-mercaptoethanol at 38.5°C under gas phase of 5% CO2 in air. In Experiment 1, survival rates after vitrification were compared between the nuclear transfer and the IVF blastocysts. Survival rates of vitrified nuclear transfer blastocysts (n = 60, Day 8) at 24 and 48 h were 70.0% and 56.7%, respectively, and those of vitrified IVF blastocysts (n = 41) were 82.9% and 82.9%, respectively. There were no significant differences in survival rates at 24 and 48 h between the two groups. In Experiment 2, one (VIT-single) or two (VIT-double) vitrified and one (nonVIT-single) or two (nonVIT-double) nonvitrified reconstructed blastocysts per animal were transferred into Holstein dry cows. The result of Experiment 2 is shown in Table 1. This experiment demonstrated that the vitrification method in this study can be used for cloned embryo cryopreservation but the production rate should be improved. Table 1. Comparison of survival rates of vitrified or nonvitrified cloned embryos after transfer


2010 ◽  
Vol 22 (1) ◽  
pp. 185
Author(s):  
R. P. C. Gerger ◽  
F. Forell ◽  
J. C. Mezzalira ◽  
F. Zago ◽  
F. K. Vieira ◽  
...  

Despite the apparent success of cloning by somatic cell nuclear transfer (SCNT), the efficiency in development to term remains low, with a high rate of losses occurring throughout pregnancy due to faulty reprogramming and conceptus abnormalities. As the ideal fusion-activation interval for optimal nuclear reprogramming after cloning is still ill-defined, the aim of this study was to determine the effect of 2 distinct fusion-activation intervals and embryo aggregation on in vitro development of cloned bovine embryos. Bovine COCs from slaughterhouse ovaries were used after IVM for the production of cloned embryos by handmade cloning, according to our established procedures (Ribeiro et al. 2009 Cloning Stem Cells, in press). Following cumulus and zona removal, oocytes were manually bisected, with hemi-cytoplasts selected by DNA staining. Two hemi-cytoplasts and an adult skin somatic cell were attached and fused with a 15V AC pre-pulse for 5 s, followed by a double 1.2 kV cm-1 DC pulse for 20 μs. Reconstructed embryos were activated in ionomycin exactly at 2 or 4 h post-fusion (2 hpf or 4 hpf), followed by an incubation in 6-DMAP for 4 h. Cloned embryos from both fusion-activation intervals were in vitro-cultured in the well of the well (WOW) system for 7 days, allocating one (1 × 100%) or two (2 × 100%) cloned embryos per WOW. Grade 1 Day-7 blastocysts were transferred to synchronous recipients. Cleavage (Day 2) and blastocyst (Day 7) rates, on a per WOW basis, and pregnancy (Days 30 and 150) rates were compared using the chi-square or the Fisher test, with results from 9 replications summarized in Table 1. Increasing the fusion-activation interval to 4 h decreased cleavage but not blastocyst rates in 1 × 100% embryos. Also, blastocyst rates were lower in 1 × 100% embryos activated 2 h post-fusion. In general, cleavage and blastocysts rates for 2 × 100% embryos (91.5 and 46.0%) were higher than for 1 × 100% embryo counterparts (74.4 and 31.3%), respectively, regardless of the activation time. In addition, blastocyst rates for 4 hpf-activated embryos (50.3%), based on cleavage, were higher than for 2 hpf-activated embryos (38.3%), irrespective of the aggregation scheme. Nonetheless, despite differences in in vitro development, pregnancy rates and conceptus development in the first half of pregnancy were similar between groups. A longer fusion-activation interval (4 hpf) or embryo aggregation (2 × 100%) increased blastocyst yield but did not improve in vivo development and pregnancy maintenance following the transfer to female recipients in cattle. Table 1.In vitro and in vivo development of cloned bovine embryos This study was supported by FAPESP and CAPES, Brazil.


2007 ◽  
Vol 19 (1) ◽  
pp. 147
Author(s):  
E. Lee ◽  
K. Song ◽  
Y. Jeong ◽  
S. Hyun

Generally, blastocyst (BL) formation and embryo cell number are used as main parameters to evaluate the viability and quality of in vitro-produced somatic cell nuclear transfer (SCNT) embryos. We investigated whether in vitro development of SCNT pig embryos correlates with in vivo viability after transfer to surrogates. For SCNT, cumulus–oocyte complexes (COCs) were matured in TCM-199 supplemented with follicular fluid, hormones, EGF, cysteine, and insulin for the first 22 h and in a hormone-free medium for 18 h. Three sources of pig skin cells were used as nuclear donor: (1) skin fibroblasts of a cloned piglet that were produced by SCNT of fetal fibroblasts from a Landrace × Yorkshire × Duroc F1 hybrid (LYD), (2) skin fibroblasts of a miniature pig having the human decay accelerating factor gene (hDAF-MP), and (3) skin fibroblasts of a miniature pig with a different strain (MP). MII oocytes were enucleated, subjected to nuclear transfer from a donor cell, electrically fused, and activated 1 h after fusion. SCNT embryos were cultured in a modified NCSU-23 (Park Y et al. 2005 Zygote 13, 269–275) for 6 days or surgically transferred (110–150 fused embryos) into the oviduct of a surrogate that showed standing estrus on the same day as SCNT. Embryos were examined for cleavage and BL formation on Days 2 and 6, respectively (Day 0 = the day of SCNT). BLs were examined for their cell number after staining with Hoechst 33342. Pregnancy was diagnosed by ultrasound 30 and 60 days after embryo transfer. Embryo cleavage was not affected by donor cells (82, 81, and 72% for LYD, hDAF-MP, and MP, respectively), but BL formation was higher (P < 0.05) in hDAF-MP (16%) than in LYD (9%) and MP (6%). MP showed higher (P < 0.05) BL cell number (46 cells/BL) than hDAF-MP (34 cells) but did not show a difference from LYD (37 cells). LYD and MP showed higher pregnancy rates (Table 1) on Days 30 and 60, even though they showed lower BL formation in vitro. Due to a relatively small number of embryo transfers through a limited period, we could not exclude any possible effects by seasonal or operational differences. These results indicated that pregnancy did not correlate with in vitro BL formation of SCNT pig embryos but rather were affected by the source of donor cells. Table 1.In vivo development of somatic cell nuclear transfer pig embryos derived from different sources of donor cells This work was supported by the Research Project on the Production of Bio-organs (No. 200506020601), Ministry of Agriculture and Forestry, Republic of Korea.


Sign in / Sign up

Export Citation Format

Share Document