cell clones
Recently Published Documents


TOTAL DOCUMENTS

3037
(FIVE YEARS 290)

H-INDEX

125
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Guangyao Tian ◽  
Mingqian Li ◽  
Guoyue Lv

T cells play a key role in determining allograft function by mediating allogeneic immune responses to cause rejection, and recent work pointed their role in mediating tolerance in transplantation. The unique T-cell receptor (TCR) expressed on the surface of each T cell determines the antigen specificity of the cell and can be the specific fingerprint for identifying and monitoring. Next-generation sequencing (NGS) techniques provide powerful tools for deep and high-throughput TCR profiling, and facilitate to depict the entire T cell repertoire profile and trace antigen-specific T cells in circulation and local tissues. Tailing T cell transcriptomes and TCR sequences at the single cell level provides a full landscape of alloreactive T-cell clones development and biofunction in alloresponse. Here, we review the recent advances in TCR sequencing techniques and computational tools, as well as the recent discovery in overall TCR profile and antigen-specific T cells tracking in transplantation. We further discuss the challenges and potential of using TCR sequencing-based assays to profile alloreactive TCR repertoire as the fingerprint for immune monitoring and prediction of rejection and tolerance.


2022 ◽  
Vol 12 ◽  
Author(s):  
Manuel Alfredo Podestà ◽  
Megan Sykes

Chronic rejection and immunosuppression-related toxicity severely affect long-term outcomes of kidney transplantation. The induction of transplantation tolerance – the lack of destructive immune responses to a transplanted organ in the absence of immunosuppression – could potentially overcome these limitations. Immune tolerance to kidney allografts from living donors has been successfully achieved in humans through clinical protocols based on chimerism induction with hematopoietic cell transplantation after non-myeloablative conditioning. Notably, two of these protocols have led to immune tolerance in a significant fraction of HLA-mismatched donor-recipient combinations, which represent the large majority of cases in clinical practice. Studies in mice and large animals have been critical in dissecting tolerance mechanisms and in selecting the most promising approaches for human translation. However, there are several key differences in tolerance induction between these models and humans, including the rate of success and stability of donor chimerism, as well as the relative contribution of different mechanisms in inducing donor-specific unresponsiveness. Kidney allograft tolerance achieved through durable full-donor chimerism may be due to central deletion of graft-reactive donor T cells, even though mechanistic data from patient series are lacking. On the other hand, immune tolerance attained with transient mixed chimerism-based protocols initially relies on Treg-mediated suppression, followed by peripheral deletion of donor-reactive recipient T-cell clones under antigenic pressure from the graft. These conclusions were supported by data deriving from novel high-throughput T-cell receptor sequencing approaches that allowed tracking of alloreactive repertoires over time. In this review, we summarize the most important mechanistic studies on tolerance induction with combined kidney-bone marrow transplantation in humans, discussing open issues that still need to be addressed and focusing on techniques developed in recent years to efficiently monitor the alloresponse in tolerance trials. These cutting-edge methods will be instrumental for the development of immune tolerance protocols with improved efficacy and to identify patients amenable to safe immunosuppression withdrawal.


2022 ◽  
Vol 10 (1) ◽  
pp. e003325
Author(s):  
Shiping Jiao ◽  
Qing Xiong ◽  
Meisi Yan ◽  
Xiaolu Zhan ◽  
Zhenhuang Yang ◽  
...  

BackgroundSentinel lymph nodes (LNs) are regarded as key immune surveillance sites in cancer wherein mature dendritic cells present tumor-derived antigens to prime and activate T cells, which then migrate to the tumor site. However, it is unclear whether the tumor-specific T cells can be elicited within the tumor independent of the sentinel LNs.MethodsWe performed an integrative analysis of gene expression profiles of 65,285 cells and T cell receptor sequences of 15,831 T cells from 5 paired primary breast tumors and sentinel LNs to identify where clonal T cells come from and the characteristics of those clonal T cells.ResultsThe proportion of clonal T cells was higher in the primary tumors compared with the sentinel LNs, whereas all expanded clones identified in the sentinel LN were also present in the primary tumors. In contrast, 10.91% of the expanded clones in the primary tumors were not found in the sentinel LNs. These novel intratumoral T cell clones were characterized by high tissues retention capacity (CXCR6 +ITGAE+) and a distinct coinhibitory pattern (CD39 +NKG2A+) compared with the expanded T cell clones common to both sites. Furthermore, multiplex immunofluorescence imaging showed the presence of tertiary lymphoid structures (TLS) in the primary breast tumors wherein the activated cytolytic T cells were concentrated, indicating its possible role in eliciting non-sentinel LN-derived T cell clones.ConclusionsOur study revealed expanded intratumor non-sentinel LN derived T cell clones located in the TLS, which points to the need for exploring the role of TLS in antitumor immunity.


2022 ◽  
Vol 14 (1) ◽  
pp. e2022006
Author(s):  
Luca Guarnera ◽  
Valentina Boldrini ◽  
Gianmario Pasqualone ◽  
Carolina Cimino ◽  
Elisa Meddi ◽  
...  

T-cell lymphomas and leukemias are highly heterogeneous groups of rare disorders. We report a case of a 68-year-old man patient who develops two different T-cell neoplasms (Large Granular Lymphocyte Leukemia [LGLL] in 2018 and Peripheral T-cell non-Hodgkin lymphoma  not otherwise specified [PTCL-NOS] in 2019) with a previous diagnosis of B-cell marginal zone lymphoma in 2010, treated with two lines of chemo-immunotherapy. The coexistence of these different T-cell neoplasms is rarely reported in literature and, moreover, is usually described as an LGLL transformation into PTCL-NOS; differently from these examples, herein the simultaneous conditions appear to be driven by different T-cell clones. Furthermore, the PTCL-NOS had a quite unusual behaviour, with a good disease control without intensive treatment. Because of these features, it could belong to a subgroup of indolent PTCL-NOS, not yet described in the WHO classification of T-cell neoplasms, which could benefit of less aggressive treatment.


Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
Vanessa Cristina de Oliveira ◽  
Kelly Cristine Santos Roballo ◽  
Clésio Gomes Mariano Junior ◽  
Sarah Ingrid Pinto Santos ◽  
Fabiana Fernandes Bressan ◽  
...  

The mitochondrial transcription factor A (TFAM) is considered a key factor in mitochondrial DNA (mtDNA) copy number. Given that the regulation of active copies of mtDNA is still not fully understood, we investigated the effects of CRISPR-Cas9 gene editing of TFAM in human embryonic kidney (HEK) 293T cells on mtDNA copy number. The aim of this study was to generate a new in vitro model by CRISPR-Cas9 system by editing the TFAM locus in HEK293T cells. Among the resulting single-cell clones, seven had high mutation rates (67–96%) and showed a decrease in mtDNA copy number compared to control. Cell staining with Mitotracker Red showed a reduction in fluorescence in the edited cells compared to the non-edited cells. Our findings suggest that the mtDNA copy number is directly related to TFAM control and its disruption results in interference with mitochondrial stability and maintenance.


2021 ◽  
Author(s):  
Alfonso R Sanchez-Paulete ◽  
Jaime Mateus-Tique ◽  
Gurkan Mollaoglu ◽  
Sebastian R Nielsen ◽  
Adam Marks ◽  
...  

Tumor-associated macrophages (TAMs) are one of the most abundant cell types in many solid tumors and typically exert protumor effects. This has led to an interest in macrophage-depleting agents for cancer therapy, but approaches developed to date have had limited success in clinical trials. Here, we report the development of a strategy for TAM depletion in mouse solid tumor models using chimeric antigen receptor (CAR) T cells targeting the macrophage marker F4/80 (F4.CAR-T). F4.CAR-T cells effectively killed macrophages in vitro and in vivo without toxicity. When injected into mice bearing orthotopic lung tumors, F4.CAR-T cells infiltrated tumor lesions and delayed tumor growth comparably to PD1 blockade, and significantly extended mouse survival. Anti-tumor effects were mediated by F4.CAR-T-produced IFN-γ, which promoted upregulation of MHC molecules on cancer cells and tumor-infiltrating myeloid cells. Notably, F4.CAR-T promoted expansion of endogenous CD8 T cells specific for tumor-associated antigens and led to immune editing of highly antigenic tumor cell clones. Antitumor impact was also observed in mouse models of ovarian and pancreatic cancer. These studies provide proof-of- principle evidence to support CAR-T targeting of TAMs as a means to enhance antitumor immunity.


2021 ◽  
Author(s):  
Bence Daniel ◽  
Kathryn E Yost ◽  
Katalin Sandor ◽  
Yu Xia ◽  
Yanyan Qi ◽  
...  

T cells activated by chronic antigen exposure in the setting of viral infections or cancer can adopt an exhausted T cell (Tex) state, characterized by reduced effector function and proliferative capacity, and the upregulation of inhibitory receptors. However, whether all antigen-specific T cell clones follow the same molecular and cellular Tex differentiation trajectory remains unclear. Here, we generate a single-cell multi-omic atlas of T cell exhaustion that redefines the phenotypic diversity and molecular regulation of Tex phenotypes. Longitudinal analysis during chronic viral infection identifies an early effector phenotype that is epigenetically primed for Tex differentiation and two late-stage Tex cell states with either a terminal exhaustion or a killer cell lectin-like receptor (KLR)-expressing cytotoxic gene signature. We define clonal trajectories of antigen-specific T cells using paired single-cell RNA and T cell receptor sequencing and reveal distinct differentiation trajectories resulting in terminal Tex-biased, KLR Tex-biased, or divergent clones that differentiate into both phenotypes. Comparison of Tex phenotypes among shared T cell clones that traffic to multiple organs reveals that clonal differentiation trajectories are maintained across tissues. Finally, we show that differences in clonal differentiation trajectory are driven by TCR signal strength, whereby high-affinity T cell clones preferentially adopt a terminal Tex fate, while low-affinity clones adopt an effector-like KLR Tex fate that is detectable long-term but depleted in high antigen settings. These findings reveal clonal heterogeneity in the T cell response to chronic antigen and genomic programs that underlie Tex fates and persistence.


Blood ◽  
2021 ◽  
Author(s):  
Adèle de Masson ◽  
Delphine Darbord ◽  
Gabor Dobos ◽  
Marie Boisson ◽  
Marie Roelens ◽  
...  

Cutaneous T-cell lymphoma (CTCL) is a malignancy of skin-homing T-cells. Long-term remissions are rare in CTCL, and the pathophysiology of long-lasting disease control is unknown. Mogamulizumab is a defucosylated anti-human CCR4 antibody that depletes CCR4-expressing CTCL tumor cells and peripheral blood memory regulatory T cells. Prolonged remissions and immune side effects have been observed in mogamulizumab-treated CTCL patients. We report that mogamulizumab induced skin rashes in 32% of 44 CTCL patients. These rashes were associated with long-term CTCL remission, even in the absence of specific CTCL treatment. CTCL patients with mogamulizumab-induced rash had significantly higher overall survival (hazard ratio, 0.16 (0.04-0.73, p=0.01)). Histopathology and immunohistochemistry of the rashes revealed granulomatous and lichenoid patterns with CD163 macrophagic and CD8 T-cell infiltrates. Depletion of skin CTCL cells was confirmed by high-throughput sequencing analysis of TCRβ genes and in blood by flow cytometry. New reactive T-cell clones were recruited in skin. Gene expression analysis showed overexpression of CXCL9 and CXCL11, two chemokines involved in CXCR3-expressing T-cell homing to skin. Single-cell RNA sequencing analysis in skin of CTCL patients confirmed that CXCL9 and CXCL11 were primarily macrophage-derived and that skin T-cells expressed CXCR3. Finally, patients with rashes had a significantly higher proportion of exhausted reactive blood T-cells expressing TIGIT and PD1 at baseline compared to patients without rash, which decreased under mogamulizumab treatment, consistent with an activation of the antitumor immunity. Together, these data suggest that mogamulizumab may induce long-term immune control in CTCL patients by activation of the macrophagic and T-cell immune responses.


Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Gerelchimeg Bou ◽  
Shimeng Guo ◽  
Jia Guo ◽  
Zhuang Chai ◽  
Jianchao Zhao ◽  
...  

Summary The efficiency of establishing pig pluripotent embryonic stem cell clones from blastocysts is still low. The transcription factor Nanog plays an important role in maintaining the pluripotency of mouse and human embryonic stem cells. Adequate activation of Nanog has been reported to increase the efficiency of establishing mouse embryonic stem cells from 3.5 day embryos. In mouse, Nanog starts to be strongly expressed as early as the morula stage, whereas in porcine NANOG starts to be strongly expressed by the late blastocyst stage. Therefore, here we investigated both the effect of expressing NANOG on porcine embryos early from the morula stage and the efficiency of porcine pluripotent embryonic stem cell clone formation. Compared with intact porcine embryos, NANOG overexpression induced a lower blastocyst rate, and did not show any advantages for embryo development and pluripotent embryonic stem cell line formation. These results indicated that, although NANOG is important pluripotent factor, NANOG overexpression is unnecessary for the initial formation of porcine pluripotent embryonic stem cell clones in vitro.


Sign in / Sign up

Export Citation Format

Share Document