Spatial working memory over long retention intervals: Dependence on sustained cholinergic activation in the septohippocampal or nucleus basalis magnocellularis-cortical pathways?

Neuroscience ◽  
1994 ◽  
Vol 62 (3) ◽  
pp. 681-693 ◽  
Author(s):  
T.P. Durkin
1986 ◽  
Vol 64 (3) ◽  
pp. 376-382 ◽  
Author(s):  
Richard J. Beninger ◽  
B. A. Wirsching ◽  
Khem Jhamandas ◽  
Roland J. Boegman ◽  
Sherif R. El-Defrawy

Many data suggest that the brain's cholinergic neurons participate in the control of memory and it has been suggested that cholinergic systems are involved differentially in working and reference memory. To test this hypothesis the effects on memory of unilateral injections of the neurotoxins, quinolinic acid or kainic acid into the cortically projecting cholinergic cells of the nucleus basalis magnocellularis (nbm) were evaluated. In experiment 1, quinolinate-injected (n = 7) and sham-operated (n = 7) rats were tested in a T-maze alternation task that requires working memory. Lesion rats performed significantly more poorly than shams and subsequent biochemical assays of cortical choline acetyltransferase (CAT) activity revealed significant reductions in the lesion rats. In experiment 2, kainate-injected (n = 9) and sham-operated (n = 8) rats were trained in an eight-arm radial maze with only four arms baited. Lesion rats made significantly more working memory errors (entries into baited arms from which the food had already been collected) than reference memory errors (entries into never baited arms). CAT assays showed that the lesion led to a decrease in cortical CAT with no significant change in hippocampal CAT. The results of these studies support the hypothesis that cholinergic neurons of the basocortical system may be differentially involved in working and reference memory.


2018 ◽  
Author(s):  
Dylan Layfield ◽  
Nathan Sidell ◽  
Afnan Abdullahi ◽  
Ehren L. Newman

AbstractSpatial working memory is important for foraging and navigating the environment. However, its neural underpinnings remain poorly understood. The hippocampus, known for its spatial coding and involvement in spatial memory, is widely understood to be necessary for spatial working memory when retention intervals increase beyond seconds into minutes. Here, we describe new evidence that the dorsal hippocampus is not always necessary for spatial working memory for retention intervals of 8 minutes. Rats were trained to perform a delayed spatial win shift radial arm maze task (DSWS) with an 8-minute delay between study and test phases. We then tested whether bilateral inactivation of the dorsal hippocampus between the study and test phases impaired behavioral performance at test. Inactivation was achieved through a bilateral infusion of lidocaine. Performance following lidocaine was compared to control trials, in which, sterile phosphate buffered saline (PBS) was infused. Test performance did not differ between the lidocaine and PBS conditions, remaining high in each. To explore the possibility that this insensitivity to inactivation was a result of overtraining, a second cohort of animals received substantially less training prior to the infusions. In this second cohort, lidocaine infusions did significantly impair task performance. These data indicate that successful performance of a spatial win-shift task on the 8-arm maze need not always be hippocampally dependent.


1992 ◽  
Vol 597 (1) ◽  
pp. 66-73 ◽  
Author(s):  
Richard J. Beninger ◽  
Janet L. Ingles ◽  
Paul J. Mackenzie ◽  
Khem Jhamandas ◽  
Roland J. Boegman

2015 ◽  
Vol 223 (2) ◽  
pp. 102-109 ◽  
Author(s):  
Evelyn H. Kroesbergen ◽  
Marloes van Dijk

Recent research has pointed to two possible causes of mathematical (dis-)ability: working memory and number sense, although only few studies have compared the relations between working memory and mathematics and between number sense and mathematics. In this study, both constructs were studied in relation to mathematics in general, and to mathematical learning disabilities (MLD) in particular. The sample consisted of 154 children aged between 6 and 10 years, including 26 children with MLD. Children performing low on either number sense or visual-spatial working memory scored lower on math tests than children without such a weakness. Children with a double weakness scored the lowest. These results confirm the important role of both visual-spatial working memory and number sense in mathematical development.


1999 ◽  
Author(s):  
Jarod N. Wright ◽  
Clint D. Walker ◽  
Russell E. Morgan

1999 ◽  
Author(s):  
Allen E. Butt ◽  
Timothy D. Bowman ◽  
J. Scott Novotney ◽  
Jason L. Rogers ◽  
Ruth A. Stoehr

Author(s):  
Shelly D. Steele ◽  
Nancy J. Minshew ◽  
Bea Luna ◽  
John A. Sweeney

Sign in / Sign up

Export Citation Format

Share Document