biochemical assays
Recently Published Documents


TOTAL DOCUMENTS

836
(FIVE YEARS 364)

H-INDEX

60
(FIVE YEARS 8)

2022 ◽  
Vol 23 (2) ◽  
pp. 771
Author(s):  
José Manuel Ezquerra-Aznárez ◽  
Giulia Degiacomi ◽  
Henrich Gašparovič ◽  
Giovanni Stelitano ◽  
Josè Camilla Sammartino ◽  
...  

Avermectins are macrocyclic lactones with anthelmintic activity. Recently, they were found to be effective against Mycobacterium tuberculosis, which accounts for one third of the worldwide deaths from antimicrobial resistance. However, their anti-mycobacterial mode of action remains to be elucidated. The activity of selamectin was determined against a panel of M. tuberculosis mutants. Two strains carrying mutations in DprE1, the decaprenylphosphoryl-β-D-ribose oxidase involved in the synthesis of mycobacterial arabinogalactan, were more susceptible to selamectin. Biochemical assays against the Mycobacterium smegmatis DprE1 protein confirmed this finding, and docking studies predicted a binding site in a loop that included Leu275. Sequence alignment revealed variants in this position among mycobacterial species, with the size and hydrophobicity of the residue correlating with their MIC values; M. smegmatis DprE1 variants carrying these point mutations validated the docking predictions. However, the correlation was not confirmed when M. smegmatis mutant strains were constructed and MIC phenotypic assays performed. Likewise, metabolic labeling of selamectin-treated M. smegmatis and M. tuberculosis cells with 14C-labeled acetate did not reveal the expected lipid profile associated with DprE1 inhibition. Together, our results confirm the in vitro interactions of selamectin and DprE1 but suggest that selamectin could be a multi-target anti-mycobacterial compound.


2022 ◽  
Author(s):  
Lauren M Tom ◽  
Martina Aulitto ◽  
Yu-Wei Wu ◽  
Yu W Gao ◽  
Kai Deng ◽  
...  

Plant cell walls are interwoven structures recalcitrant to degradation. Both native and adapted microbiomes are particularly effective at plant cell wall deconstruction. Studying these deconstructive microbiomes provides an opportunity to assess microbiome performance and relate it to specific microbial populations and enzymes. To establish a system assessing comparative microbiome performance, parallel microbiomes were cultivated on sorghum (Sorghum bicolor L. Moench) from compost inocula. Biomass loss and biochemical assays indicated that these microbiomes diverged in their ability to deconstruct biomass. Network reconstructions from time-dependent gene expression identified key deconstructive groups within the adapted sorghum-degrading communities, including Actinotalea, Filomicrobium, and Gemmanimonadetes populations. Functional analysis of gene expression demonstrated that the microbiomes proceeded through successional stages that are linked to enzymes that deconstruct plant cell wall polymers. This combination of network and functional analysis highlighted the importance of cellulose-active Actinobacteria in differentiating the performance of these microbiomes.


STEMedicine ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. e111
Author(s):  
Tianyi Wu ◽  
Chen Huang ◽  
Feng Wang

LncRNA DLX6-AS1 takes part in the progression of various cancers. However, it is not elaborated clearly in osteosarcoma (OS) development. Therefore, we aimed to explore the impacts and specific mechanisms of DLX6-AS1 on the progression of OS. We estimated the pattern of DLX6-AS1 expression in Ost tissues and cells via quantitative reverse transcription polymerase chain reaction. A number of biochemical assays were carried out to assess the effects of DLX6-AS1. Target genes were predicted by bioinformatics methods. Then we used the transfection of si-RNA, miRNA inhibitor, and miRNA mimics to explore the underlying mechanisms and built tumor xenograft models for the in vivo experiments. A higher expression of DLX6-AS1 was found in OS tissues and cell lines, while knockdown of DXL6-AS1 suppressed OS cell metastasis and proliferation in vitro and in vivo. Mechanistically, it was revealed that DXL6-AS1 sponged miR-200a-3p, thus positively regulating the downstream GPM6B. In summary, DLX6-AS1 knockdown would inhibit OS cell migration, cell invasion, and cell proliferation, in which the DXL6-AS1/ miR-200a-3p/ GPM6B axis played a critical role.


2022 ◽  
Vol 23 (2) ◽  
pp. 607
Author(s):  
Agnieszka Krakowiak ◽  
Liliana Czernek ◽  
Marta Pichlak ◽  
Renata Kaczmarek

In this study, we present a new selenium derivative, 2′-deoxyguanosine-5′-O-selenophosphate (dGMPSe), synthesized by the oxathiaphospholane method and adapted here for the synthesis of nucleoside selenophosphates. Using biochemical assays (HPLC- and fluorescence-based), we investigated the enzymatic activity of HINT1 towards dGMPSe in comparison with the corresponding thiophosphate nucleoside, i.e., dGMPS. Both substrates showed similar kcat and a small difference in Km, and during the reactions the release of reducing agents such as H2Se and H2S were expected and detected. MTT viability assay and microscopic analysis showed that dGMPSe was toxic to HeLa cancer cells, and this cytotoxicity was due to the release of H2Se. The release of H2Se or H2S in the living cells after administration of dGMPSe and/or dGMPS, both without carrier and by electroporation, was observed using a fluorescence assay, as previously for NMPS. In conclusion, our comparative experiments with dGMPSe and dGMPS indicate that the HINT1 enzyme is capable of converting (d)NMPSe to (d)NMP and H2Se, both in vitro and intracellularly. Since the anticancer activity of various selenium compounds depends on the formation of hydrogen selenide, the actual inducer of cell death, we propose that selenium-containing nucleotides represent another option as novel compounds with anticancer therapeutic potential.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010169
Author(s):  
Kwok-ho Lam ◽  
Jacqueline M. Tremblay ◽  
Kay Perry ◽  
Konstantin Ichtchenko ◽  
Charles B. Shoemaker ◽  
...  

Botulinum neurotoxins (BoNTs) are among the deadliest of bacterial toxins. BoNT serotype A and B in particular pose the most serious threat to humans because of their high potency and persistence. To date, there is no effective treatment for late post-exposure therapy of botulism patients. Here, we aim to develop single-domain variable heavy-chain (VHH) antibodies targeting the protease domains (also known as the light chain, LC) of BoNT/A and BoNT/B as antidotes for post-intoxication treatments. Using a combination of X-ray crystallography and biochemical assays, we investigated the structures and inhibition mechanisms of a dozen unique VHHs that recognize four and three non-overlapping epitopes on the LC of BoNT/A and BoNT/B, respectively. We show that the VHHs that inhibit the LC activity occupy the extended substrate-recognition exosites or the cleavage pocket of LC/A or LC/B and thus block substrate binding. Notably, we identified several VHHs that recognize highly conserved epitopes across BoNT/A or BoNT/B subtypes, suggesting that these VHHs exhibit broad subtype efficacy. Further, we identify two novel conformations of the full-length LC/A, that could aid future development of inhibitors against BoNT/A. Our studies lay the foundation for structure-based engineering of protein- or peptide-based BoNT inhibitors with enhanced potencies and cross-subtypes properties.


2022 ◽  
Author(s):  
Lucianna H. Santos ◽  
Thales Kronenberger ◽  
Renata G Almeida ◽  
Elany Barbosa da Silva ◽  
Rafael E O Rocha ◽  
...  

The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In the present work, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC50) values between 0.41 μM and 66 μM. In addition, eight compounds inhibited PLpro with IC50 ranging from 1.7 μM to 46 μM. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.


2022 ◽  
Author(s):  
Smita Yadav ◽  
Sujin Byeon ◽  
Bailey Werner ◽  
Reilly Falter ◽  
Kristian Davidsen ◽  
...  

Septins are a family of cytoskeletal proteins that regulate several important aspects of neuronal development. Septin 7 (Sept7) is enriched at the base of dendritic spines in excitatory neurons and mediates both spine formation and spine-synapse maturation. Phosphorylation at a conserved C-terminal tail residue of Sept7 mediates its translocation into the dendritic spine head to allow spine-synapse maturation. The mechanistic basis for postsynaptic stability and compartmentalization conferred by phosphorylated Sept7, however, is not known. We report herein the proteomic identification of Sept7 phosphorylation dependent neuronal interactors. Using Sept7 C-terminal phosphopeptide pulldown and biochemical assays, we show that the 14-3-3 family of proteins specifically interact with Sept7 when phosphorylated at the T426 residue. Biochemically, we validate the interaction between Sept7 and 14-3-3 isoform gamma, and show that 14-3-3 gamma is also enriched in mature dendritic spine head. Further, we demonstrate that interaction of phosphorylated Sept7 with 14-3-3 protects it from dephosphorylation, as expression of a 14-3-3 antagonist significantly decreases phosphorylated Sept7 in neurons. This study identifies 14-3-3 proteins as an important physiological regulator of Sept7 function in neuronal development.


Author(s):  
Maher A Shahrour ◽  
Francesco Massimo Lasorsa ◽  
Vito Porcelli ◽  
Imad Dweikat ◽  
Maria Antonietta Di Noia ◽  
...  

Abstract Context The hyperinsulinism/hyperammonemia (HI/HA) syndrome, the second most common form of congenital hyperinsulinism, has been associated to dominant mutations in GLUD1, coding for the mitochondrial enzyme glutamate dehydrogenase, that increase enzyme activity by reducing its sensitivity to allosteric inhibition by GTP. Objective To identify the underlying genetic aetiology in two siblings who presented with the biochemical features of HI/HA syndrome but did not carry pathogenic variants in GLUD1, and to determine the functional impact of the newly identified mutation. Main Outcome Measures The patients were investigated by whole exome sequencing. Yeast complementation studies and biochemical assays on the recombinant mutated protein were performed. The consequences of stable slc25a36 silencing in HeLa cells were also investigated. Results A homozygous splice site variant was identified in solute carrier family 25, member 36 (SLC25A36), encoding the pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine as well as guanine nucleotides across the inner mitochondrial membrane. The mutation leads to a 26 aa in-frame deletion in the first repeat domain of the protein which abolished transport activity. Furthermore, knockdown of slc25a36 expression in HeLa cells caused a marked reduction in the mitochondrial GTP content which likely leads to an hyperactivation of glutamate dehydrogenase in our patients. Conclusions We report for the first time a mutation in PNC2/SLC25A36 leading to HI/HA and provide functional evidence of the molecular mechanism responsible for this phenotype. Our findings underscore the importance of mitochondrial nucleotide metabolism and expand the role of mitochondrial transporters in insulin secretion.


2021 ◽  
Author(s):  
Vera Grinkevich ◽  
Vema Aparna ◽  
Karin Fawkner ◽  
Natalia Issaeva ◽  
Virginia Andreotti ◽  
...  

Restoration of the p53 tumor suppressor for personalised cancer therapy is a promising strategy. However, high-affinity MDM2 inhibitors have shown substantial side effects in clinical trials. Thus, elucidation of the molecular mechanisms of action of p53 reactivating molecules with alternative functional principle is of the utmost importance. Here, we report a discovery of a novel allosteric mechanism of p53 reactivation through targeting the p53 N-terminus which blocks both p53/MDM2 and p53/MDM4 interactions. Using biochemical assays and molecular docking, we identified the binding site of two p53 reactivating molecules, RITA and protoporphyrin IX (PpIX). Ion-mobility mass spectrometry revealed that the binding of RITA to serine 33 and serine 37 is responsible for inducing the allosteric shift in p53, which shields the MDM2 binding residues of p53 and prevents its interactions with MDM2 and MDM4. Our results point to an alternative mechanism of blocking p53 interaction with MDM2 and MDM4 and may pave the way for the development of novel allosteric inhibitors of p53/MDM2 and p53/MDM4 interactions.


2021 ◽  
Vol 102 (12) ◽  
Author(s):  
Nicole Falci Finardi ◽  
HyeongJun Kim ◽  
Lee Z. Hernandez ◽  
Matthew R. G. Russell ◽  
Catherine M-K Ho ◽  
...  

The shortcomings of current anti-human cytomegalovirus (HCMV) drugs has stimulated a search for anti-HCMV compounds with novel targets. We screened collections of bioactive compounds and identified a range of compounds with the potential to inhibit HCMV replication. Of these compounds, we selected bisbenzimide compound RO-90-7501 for further study. We generated analogues of RO-90-7501 and found that one compound, MRT00210423, had increased anti-HCMV activity compared to RO-90-7501. Using a combination of compound analogues, microscopy and biochemical assays we found RO-90-7501 and MRT00210423 interacted with DNA. In single molecule microscopy experiments we found RO-90-7501, but not MRT00210423, was able to compact DNA, suggesting that compaction of DNA was non-obligatory for anti-HCMV effects. Using bioinformatics analysis, we found that there were many putative bisbenzimide binding sites in the HCMV DNA genome. However, using western blotting, quantitative PCR and electron microscopy, we found that at a concentration able to inhibit HCMV replication our compounds had little or no effect on production of certain HCMV proteins or DNA synthesis, but did have a notable inhibitory effect on HCMV capsid production. We reasoned that these effects may have involved binding of our compounds to the HCMV genome and/or host cell chromatin. Therefore, our data expand our understanding of compounds with anti-HCMV activity and suggest targeting of DNA with bisbenzimide compounds may be a useful anti-HCMV strategy.


Sign in / Sign up

Export Citation Format

Share Document