Influence of optical field emission on the nonlinear photoelectric effect induced by ultrashort laser pulses

1972 ◽  
Vol 39 (3) ◽  
pp. 231-232 ◽  
Author(s):  
Gy. Farkas ◽  
Z.Gy. Horváth ◽  
I. Kertész
2019 ◽  
Vol 5 (9) ◽  
pp. eaax4545 ◽  
Author(s):  
Chaojie Zhang ◽  
Chen-Kang Huang ◽  
Ken A. Marsh ◽  
Chris E. Clayton ◽  
Warren B. Mori ◽  
...  

Kinetic instabilities arising from anisotropic electron velocity distributions are ubiquitous in ionospheric, cosmic, and terrestrial plasmas, yet there are only a handful of experiments that purport to validate their theory. It is known that optical field ionization of atoms using ultrashort laser pulses can generate plasmas with known anisotropic electron velocity distributions. Here, we show that following the ionization but before collisions thermalize the electrons, the plasma undergoes two-stream, filamentation, and Weibel instabilities that isotropize the electron distributions. The polarization-dependent frequency and growth rates of these kinetic instabilities, measured using Thomson scattering of a probe laser, agree well with the kinetic theory and simulations. Thus, we have demonstrated an easily deployable laboratory platform for studying kinetic instabilities in plasmas.


Author(s):  
Isamu Miyamoto ◽  
Kristian Cvecek ◽  
Yasuhiro Okamoto ◽  
Michael Schmidt ◽  
Henry Helvajian

Author(s):  
Marcelo Bertolete Carneiro ◽  
Patrícia Alves Barbosa ◽  
Ricardo Samad ◽  
NIlson Vieira ◽  
Wagner de Rossi ◽  
...  

Author(s):  
V. Pouget ◽  
E. Faraud ◽  
K. Shao ◽  
S. Jonathas ◽  
D. Horain ◽  
...  

Abstract This paper presents the use of pulsed laser stimulation with picosecond and femtosecond laser pulses. We first discuss the resolution improvement that can be expected when using ultrashort laser pulses. Two case studies are then presented to illustrate the possibilities of the pulsed laser photoelectric stimulation in picosecond single-photon and femtosecond two-photon modes.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Pengjie Wang ◽  
Zheng Gong ◽  
Seong Geun Lee ◽  
Yinren Shou ◽  
Yixing Geng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document