heavy ions
Recently Published Documents


TOTAL DOCUMENTS

4290
(FIVE YEARS 314)

H-INDEX

93
(FIVE YEARS 7)

Author(s):  
Valeriy Kizka

In the article, the fireball formed in the collision of relativistic nuclei is considered as a quantum object. Based on this, an attempt is made to explain the difference in the measurements of hyperon yields in the two experiments - NA49 and NA57. Using the basic principles of quantum mechanics, it was shown that a fireball can have two quantum states - with and without ignited Quark-Gluon Plasma (QGP). With an increase of the collision energy of heavy ions, the probability of QGP ignition increases. At the same time, the probability of the formation of a fireball without igniting the QGP also remains not zero.


Ceramics ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 13-23
Author(s):  
Baurzhan Abyshev ◽  
Artem L. Kozlovskiy ◽  
Kassym Sh Zhumadilov ◽  
Alex V. Trukhanov

The work is devoted to the study of radiation damage and subsequent swelling processes of the surface layer of Li2ZrO3 ceramics under irradiation with heavy Xe22+ ions, depending on the accumulation of the radiation dose. The samples under study were obtained using a mechanochemical synthesis method. The samples were irradiated with heavy Xe22+ ions with an energy of 230 MeV at irradiation fluences of 1011–1016 ion/cm2. The choice of ion types is due to the possibility of simulating the radiation damage accumulation processes as a result of the implantation of Xe22+ ions and subsequent atomic displacements. It was found that, at irradiation doses above 5 × 1014 ion/cm2, point defects accumulate, which leads to a disordering of the surface layer and a subsequent decrease in the strength and hardness of ceramics. At the same time, the main process influencing the decrease in resistance to radiation damage is the crystal structure swelling as a result of the accumulation of defects and disordering of the crystal lattice.


Author(s):  
Qiang Sun ◽  
Qianhong Zhou ◽  
Hantian Zhang ◽  
Wei Yang ◽  
Ye Dong ◽  
...  

Abstract The separation phenomenon of light and heavy ions was widely observed experimentally in the vacuum arc discharge with multi-component composite cathode. In this work, a two-dimensional axisymmetric multi-fluid model is used to study the separation mechanism in the multi-component composite cathode vacuum arc. The multi-component vacuum arcs are simulated as a whole which includes separate cathode spot jets, the mixing region, and common arc column. The results show that the plasma jets originated from the separate cathode spot mix together to form a common arc column after a certain distance from the cathode. Due to the rapid increase of ion temperature dozens of times in mixing region of cathode spot jet, the effect of pressure gradient becomes far greater than that of the collisions between light and heavy ions. This leads to a shift in the predominant ion motion mechanism from ion-ion collision (single cathode spot jet region) to pressure expansion (the mixing region). Finally, the light ions gain higher velocities under pressure expansion. In addition, the effect of thermal conductivity and viscosity leads to the wider high temperature regions for light ions, thus making a wider distribution of corresponding ion flux. The numerical results are qualitatively consistent with the experimental results. This paper provides an insight into ion separation mechanism in the multi-component vacuum arc.


2021 ◽  
Vol 22 (24) ◽  
pp. 13530
Author(s):  
Arif Ali Chishti ◽  
Christa Baumstark-Khan ◽  
Hasan Nisar ◽  
Yueyuan Hu ◽  
Bikash Konda ◽  
...  

Nuclear factor κB (NF-κB) activation might be central to heavy ion-induced detrimental processes such as cancer promotion and progression and sustained inflammatory responses. A sensitive detection system is crucial to better understand its involvement in these processes. Therefore, a DD-tdTomato fluorescent protein-based reporter system was previously constructed with human embryonic kidney (HEK) cells expressing DD-tdTomato as a reporter under the control of a promoter containing NF-κB binding sites (HEK-pNFκB-DD-tdTomato-C8). Using this reporter cell line, NF-κB activation after exposure to different energetic heavy ions (16O, 95 MeV/n, linear energy transfer—LET 51 keV/µm; 12C, 95 MeV/n, LET 73 keV/μm; 36Ar, 95 MeV/n, LET 272 keV/µm) was quantified considering the dose and number of heavy ions hits per cell nucleus that double NF-κB-dependent DD-tdTomato expression. Approximately 44 hits of 16O ions and ≈45 hits of 12C ions per cell nucleus were required to double the NF-κB-dependent DD-tdTomato expression, whereas only ≈3 hits of 36Ar ions were sufficient. In the presence of Shield-1, a synthetic molecule that stabilizes DD-tdTomato, even a single particle hit of 36Ar ions doubled NF-κB-dependent DD-tdTomato expression. In conclusion, stabilization of the reporter protein can increase the sensitivity for NF-κB activation detection by a factor of three, allowing the detection of single particle hits’ effects.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6207
Author(s):  
John G. Eley ◽  
Catherine B. Haga ◽  
Asaf Keller ◽  
Ellis M. Lazenby ◽  
Charles Raver ◽  
...  

The purpose of this work was to investigate whether minibeam therapy with heavy ions might offer improvements of the therapeutic ratio for the treatment of human brain cancers. To assess neurotoxicity, we irradiated normal juvenile rats using 120 MeV lithium-7 ions at an absorbed integral dose of 20 Gy. Beams were configured either as a solid parallel circular beam or as an array of planar parallel minibeams having 300-micron width and 1-mm center-to-center spacing within a circular array. We followed animals for 6 months after treatment and utilized behavioral testing and immunohistochemical studies to investigate the resulting cognitive impairment and chronic pathologic changes. We found both solid-beam therapy and minibeam therapy to result in cognitive impairment compared with sham controls, with no apparent reduction in neurotoxicity using heavy ion minibeams instead of solid beams under the conditions of this study.


Author(s):  
Jianxiong Lan ◽  
Pengfei Zhai ◽  
Shuai Nan ◽  
Lijun Xu ◽  
Jingjing Niu ◽  
...  

Author(s):  
V. M. Azriel’ ◽  
V. M. Akimov ◽  
E. V. Ermolova ◽  
D. B. Kabanov ◽  
L. I. Kolesnikova ◽  
...  

Abstract We propose a hard sphere model of bimolecular recombination RM+ + X– → MX + R, where M+ is an alkali ion, X– is a halide ion, and R is a neutral rare gas or mercury atom. Calculations are carried out for M+ = Cs+, X– = Br–, R = Ar, Kr, Xe, Hg, for collision energies in the range from 1 to 10 eV, and for distributions of the RM+ complex internal energy corresponding to temperatures of 500, 1000, and 2000 K. The excitation functions and opacity functions of bimolecular recombination in the hard sphere approximation are found, and the classification of the collisions according to the sequences of pairwise encounters of the particles is considered. In more than half of all the cases, recombination occurs due to a single impact of the Br– ion with the R atom. For the recombination XeCs+ + Br–, the hard sphere model enables one to reproduce the most important characteristics of the collision energy dependence of the recombination probability obtained within the framework of quasiclassical trajectory calculations.


Author(s):  
Alexander K. Fedotov ◽  
Uladzislaw E. Gumiennik ◽  
Vladimir A. Skuratov ◽  
Dmitry V. Yurasov ◽  
Julia A. Fedotova ◽  
...  
Keyword(s):  

2021 ◽  
Vol 922 (2) ◽  
pp. L33
Author(s):  
Chi Zhang ◽  
Zhaojin Rong ◽  
Hans Nilsson ◽  
Lucy Klinger ◽  
Shaosui Xu ◽  
...  

Abstract Ion escape to space through the interaction of solar wind and Mars is an important factor influencing the evolution of the Martian atmosphere. The plasma clouds (explosive bulk plasma escape), considered an important ion escaping channel, have been recently identified by spacecraft observations. However, our knowledge about Martian plasma clouds is lacking. Based on the observations of the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, we study a sequence of periodic plasma clouds that occurred at low altitudes (∼600 km) on Mars. We find that the heavy ions in these clouds are energy-dispersed and have the same velocity, regardless of species. By tracing such energy-dispersed ions, we find the source of these clouds is located in a low-altitude ionosphere (∼120 km). The average tailward moving flux of ionospheric plasma carried by clouds is on the order of 107 cm−2 s−1, which is one order higher than the average escaping flux for the magnetotail, suggesting explosive ion escape via clouds. Based on the characteristics of clouds, we suggest, similar to the outflow of Earth’s cusp, these clouds might be the product of heating due to solar wind precipitation along the open field lines, which were generated by magnetic reconnection between the interplanetary magnetic field and crustal fields that occurred above the source.


Sign in / Sign up

Export Citation Format

Share Document