Soliton solutions of the non linear Schrödinger equation with an external time-dependent field

1981 ◽  
Vol 81 (6) ◽  
pp. 310-312 ◽  
Author(s):  
A.A. Bytsenko ◽  
S.A. Ktitorov
2017 ◽  
Vol 72 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Lili Feng ◽  
Fajun Yu ◽  
Li Li

AbstractStarting from a 3×3 spectral problem, a Darboux transformation (DT) method for coupled Schrödinger (CNLS) equation is constructed, which is more complex than 2×2 spectral problems. A scheme of soliton solutions of an integrable CNLS system is realised by using DT. Then, we obtain the breather solutions for the integrable CNLS system. The method is also appropriate for more non-linear soliton equations in physics and mathematics.


Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This introductory chapter considers first the relation between molecular reaction dynamics and the major branches of physical chemistry. The concept of elementary chemical reactions at the quantized state-to-state level is discussed. The theoretical description of these reactions based on the time-dependent Schrödinger equation and the Born–Oppenheimer approximation is introduced and the resulting time-dependent Schrödinger equation describing the nuclear dynamics is discussed. The chapter concludes with a brief discussion of matter at thermal equilibrium, focusing at the Boltzmann distribution. Thus, the Boltzmann distribution for vibrational, rotational, and translational degrees of freedom is discussed and illustrated.


Sign in / Sign up

Export Citation Format

Share Document