Prediction of refrigerant thermodynamic properties by equations of state: vapor liquid equilibrium behavior of binary mixtures

1992 ◽  
Vol 80 ◽  
pp. 33-44 ◽  
Author(s):  
Mahmood Moshfeghian ◽  
Ahmad Shariat ◽  
Robert N. Maddox
2019 ◽  
Author(s):  
Gabriel Silva ◽  
Charlles Abreu ◽  
Frederico W. Tavares

Calculation of thermodynamic properties such as vapor-liquid phase behavior with equations of state is largely and successfully employed in chemical engineering applications.<br>However, in the proximities of the critical point, the different density-fluctuation scales inherent to critical phenomena introduce significant changes in these thermodynamic properties, with which the classical equations of state are not prepared to deal.<br>Aiming at correcting this failure, we apply a renormalization-group methodology to the CPA equation of state in order to improve the thermodynamic description in the vicinity of critical points.<br>We use this approach to compute vapor-liquid equilibrium of pure components and binary mixtures, as well as derivative properties such as speed of sound and heat capacity.<br>Our results show that this methodology is able to provide an equation of state with the correct non-classical behavior, thus bringing it in consonance with experimental observation of vapor-liquid equilibrium and derivative properties in near-critical conditions.


2019 ◽  
Author(s):  
Gabriel Silva ◽  
Charlles Abreu ◽  
Frederico W. Tavares

Calculation of thermodynamic properties such as vapor-liquid phase behavior with equations of state is largely and successfully employed in chemical engineering applications.<br>However, in the proximities of the critical point, the different density-fluctuation scales inherent to critical phenomena introduce significant changes in these thermodynamic properties, with which the classical equations of state are not prepared to deal.<br>Aiming at correcting this failure, we apply a renormalization-group methodology to the CPA equation of state in order to improve the thermodynamic description in the vicinity of critical points.<br>We use this approach to compute vapor-liquid equilibrium of pure components and binary mixtures, as well as derivative properties such as speed of sound and heat capacity.<br>Our results show that this methodology is able to provide an equation of state with the correct non-classical behavior, thus bringing it in consonance with experimental observation of vapor-liquid equilibrium and derivative properties in near-critical conditions.


2014 ◽  
Vol 59 (5) ◽  
pp. 1643-1650 ◽  
Author(s):  
Ranjeetha Hirawan ◽  
Sumit Sinha ◽  
Samuel A. Iwarere ◽  
J. David Raal ◽  
Paramespri Naidoo ◽  
...  

2007 ◽  
Vol 262 (1-2) ◽  
pp. 32-36 ◽  
Author(s):  
M. Radhamma ◽  
P. Venkatesu ◽  
T. Hofman ◽  
M.V. Prabhakara Rao

Sign in / Sign up

Export Citation Format

Share Document