Structure of the gene encoding Peripherin, an NGF-regulated neuronal-specific type III intermediate filament protein

Neuron ◽  
1989 ◽  
Vol 2 (1) ◽  
pp. 1043-1053 ◽  
Author(s):  
Mary Ann Thompson ◽  
Edward B. Ziff
1992 ◽  
Vol 76 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Vadim Karpov ◽  
Françoise Landon ◽  
Karima Djabali ◽  
François Gros ◽  
Marie-Madeleine Portier

1994 ◽  
Vol 107 (7) ◽  
pp. 1935-1948 ◽  
Author(s):  
J.E. Ralton ◽  
X. Lu ◽  
A.M. Hutcheson ◽  
R.A. Quinlan

The non-alpha-helical N-terminal domain of intermediate filament proteins plays a key role in filament assembly. Previous studies have identified a nonapeptide motif, SSYRRIFGG, in the non-alpha-helical N-terminal domain of vimentin that is required for assembly. This motif is also found in desmin, peripherin and the type IV intermediate filament proteins. GFAP is the only type III intermediate filament protein in which this motif is not readily identified. This study has identified two motifs in the non-alpha-helical N-terminal domain of mouse GFAP that play important roles in GFAP assembly. One motif is located at the very N terminus and has the consensus sequence, MERRRITS-ARRSY. It has some characteristics in common with the vimentin nonapeptide motif, SSYRRIFGG, including its location in the non-alpha-helical N-terminal domain and a concentration of arginine residues. Unlike the vimentin motif in which even conserved sequence changes affect filament assembly, the GFAP consensus sequence, MERRRITS-ARRSY, can be replaced by a completely unrelated sequence; namely, the heptapeptide, MVRANKR, derived from the lambda cII protein. When fused to GFAP sequences with sequential deletions of the N-terminal domain, the lambda cII heptapeptide was used to help identify a second motif, termed the RP-box, which is located just upstream of the GFAP alpha-helical rod domain. This RP-box affected the efficiency of filament assembly as well as protein-protein interactions in the filament, as shown by sedimentation assays and electron microscopy. These results are supported by previous data, which showed that the dramatic reorganization of GFAP within cells was due to phosphorylation-dephosphorylation of a site located in this RP-box. The results in this study suggest the RP-box motif to be a key modulator in the mechanism of GFAP assembly, and support a role for this motif in both the nucleation and elongation phases of filament assembly. The RP-box motif in GFAP has the consensus sequence, RLSL-RM-PP. Sequences similar to the GFAP RP-box motif are also to be found in vimentin, desmin and peripherin. Like GFAP, these include phosphorylation and proteolysis sites and are adjacent to the start of the central alpha-helical rod domain, suggesting that this motif of general importance to type III intermediate filament protein assembly.


2001 ◽  
Vol 114 (1) ◽  
pp. 101-110
Author(s):  
P. Bouchard ◽  
J. Chomilier ◽  
V. Ravet ◽  
J.P. Mornon ◽  
B. Vigues

Epiplasmin C is the major protein component of the membrane skeleton in the ciliate Tetrahymena pyriformis. Cloning and analysis of the gene encoding epiplasmin C showed this protein to be a previously unrecognized protein. In particular, epiplasmin C was shown to lack the canonical features of already known epiplasmic proteins in ciliates and flagellates. By means of hydrophobic cluster analysis (HCA), it has been shown that epiplasmin C is constituted of a repeat of 25 domains of 40 residues each. These domains are related and can be grouped in two families called types I and types II. Connections between types I and types II present rules that can be evidenced in the sequence itself, thus enforcing the validity of the splitting of the domains. Using these repeated domains as queries, significant structural similarities were demonstrated with an extra six heptads shared by nuclear lamins and invertebrate cytoplasmic intermediate filament proteins and deleted in the cytoplasmic intermediate filament protein lineage at the protostome-deuterostome branching in the eukaryotic phylogenetic tree.


2007 ◽  
Vol 128 (6) ◽  
pp. 541-550 ◽  
Author(s):  
Meagan Barclay ◽  
Peter G. Noakes ◽  
Allen F. Ryan ◽  
Jean-Pierre Julien ◽  
Gary D. Housley

2016 ◽  
Vol 27 (25) ◽  
pp. 3980-3990 ◽  
Author(s):  
Ni-Hsuan Lin ◽  
Yu-Shan Huang ◽  
Puneet Opal ◽  
Robert D. Goldman ◽  
Albee Messing ◽  
...  

Alexander disease (AxD) is a primary genetic disorder of astrocytes caused by dominant mutations in the gene encoding the intermediate filament (IF) protein GFAP. This disease is characterized by excessive accumulation of GFAP, known as Rosenthal fibers, within astrocytes. Abnormal GFAP aggregation also occurs in giant axon neuropathy (GAN), which is caused by recessive mutations in the gene encoding gigaxonin. Given that one of the functions of gigaxonin is to facilitate proteasomal degradation of several IF proteins, we sought to determine whether gigaxonin is involved in the degradation of GFAP. Using a lentiviral transduction system, we demonstrated that gigaxonin levels influence the degradation of GFAP in primary astrocytes and in cell lines that express this IF protein. Gigaxonin was similarly involved in the degradation of some but not all AxD-associated GFAP mutants. In addition, gigaxonin directly bound to GFAP, and inhibition of proteasome reversed the clearance of GFAP in cells achieved by overexpressing gigaxonin. These studies identify gigaxonin as an important factor that targets GFAP for degradation through the proteasome pathway. Our findings provide a critical foundation for future studies aimed at reducing or reversing pathological accumulation of GFAP as a potential therapeutic strategy for AxD and related diseases.


Sign in / Sign up

Export Citation Format

Share Document