rat sciatic nerve
Recently Published Documents


TOTAL DOCUMENTS

977
(FIVE YEARS 82)

H-INDEX

67
(FIVE YEARS 4)

2021 ◽  
Vol 15 ◽  
Author(s):  
Nikhil S. Chandra ◽  
Weston M. McCarron ◽  
Ying Yan ◽  
Luis C. Ruiz ◽  
Eric G. Sallinger ◽  
...  

Objective: Intuitive control of conventional prostheses is hampered by their inability to provide the real-time tactile and proprioceptive feedback of natural sensory pathways. The macro-sieve electrode (MSE) is a candidate interface to amputees’ truncated peripheral nerves for introducing sensory feedback from external sensors to facilitate prosthetic control. Its unique geometry enables selective control of the complete nerve cross-section by current steering. Unlike previously studied interfaces that target intact nerve, the MSE’s implantation requires transection and subsequent regeneration of the target nerve. Therefore, a key determinant of the MSE’s suitability for this task is whether it can elicit sensory percepts at low current levels in the face of altered morphology and caliber distribution inherent to axon regeneration. The present in vivo study describes a combined rat sciatic nerve and behavioral model developed to answer this question.Approach: Rats learned a go/no-go detection task using auditory stimuli and then underwent surgery to implant the MSE in the sciatic nerve. After healing, they were trained with monopolar electrical stimuli with one multi-channel and eight single-channel stimulus configurations. Psychometric curves derived by the method of constant stimuli (MCS) were used to calculate 50% detection thresholds and associated psychometric slopes. Thresholds and slopes were calculated at two time points 3 weeks apart.Main Results: For the multi-channel stimulus configuration, the average current required for stimulus detection was 19.37 μA (3.87 nC) per channel. Single-channel thresholds for leads located near the nerve’s center were, on average, half those of leads located near the periphery (54.92 μA vs. 110.71 μA, or 10.98 nC vs. 22.14 nC). Longitudinally, 3 of 5 leads’ thresholds decreased or remained stable over the 3-week span. The remaining two leads’ thresholds increased by 70–74%, possibly due to scarring or device failure.Significance: This work represents an important first step in establishing the MSE’s viability as a sensory feedback interface. It further lays the groundwork for future experiments that will extend this model to the study of other devices, stimulus parameters, and task paradigms.


2021 ◽  
pp. 1-10
Author(s):  
Alper Geyik ◽  
Basar Koc ◽  
Serap Cilaker Micili ◽  
Müge Kiray ◽  
Haluk Vayvada ◽  
...  

Author(s):  
Dong Hyun Kim ◽  
Seung-Han Shin ◽  
Myeong-Kyu Lee ◽  
Jae-Jin Lee ◽  
Jae Kwang Kim ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zheng Yang ◽  
Yang Yang ◽  
Yichi Xu ◽  
Weiqian Jiang ◽  
Yan Shao ◽  
...  

Abstract Background Efficient and stable delivery of neurotrophic factors (NTFs) is crucial to provide suitable microenvironment for peripheral nerve regeneration. Neurotrophin-3 (NT-3) is an important NTF during peripheral nerve regeneration which is scarce in the first few weeks of nerve defect. Exosomes are nanovesicles and have been served as promising candidate for biocarrier. In this work, NT-3 mRNA was encapsulated in adipose-derived stem cell (ADSC)-derived exosomes (ExoNT-3). These engineered exosomes were applied as NT-3 mRNA carrier and then were loaded in nerve guidance conduit (ExoNT-3-NGC) to bridge rat sciatic nerve defect. Method NT-3 mRNA was encapsulated in exosomes by forcedly expression of NT-3 mRNA in the donor ADSCs. ExoNT-3 were co-cultured with SCs in vitro; after 24 h of culture, the efficiency of NT-3 mRNA delivery was evaluated by qPCR, western blotting and ELISA. Then, ExoNT-3 were loaded in alginate hydrogel to construct the nerve guidance conduits (ExoNT-3-NGC). ExoNT-3-NGC were implanted in vivo to reconstruct 10 mm rat sciatic nerve defect. The expression of NT-3 was measured 2 weeks after the implantation operation. The sciatic nerve functional index (SFI) was examined at 2 and 8 weeks after the operation. Moreover, the therapeutic effect of ExoNT-3-NGC was also evaluated by morphology assay, immunofluorescence staining of regenerated nerves, function evaluation of gastrocnemius muscles after 8 weeks of implantation. Results The engineered exosomes could deliver NT-3 mRNA to the recipient cells efficiently and translated into functional protein. The constructed NGC could realize stable release of exosomes at least for 2 weeks. After NGC implantation in vivo, ExoNT-3-NGC group significantly promote nerve regeneration and improve the function recovery of gastrocnemius muscles compared with control exosomes (Exoempty-NGC) group. Conclusion In this work, NGC was constructed to allow exosome-mediated NT-3 mRNA delivery. After ExoNT-3-NGC implantation in vivo, the level of NT-3 could restore which enhance the nerve regeneration. Our study provide a potential approach to improve nerve regeneration.


Sign in / Sign up

Export Citation Format

Share Document