Single unit activity in the posterior parietal cortex of the monkey during the ocular following response

1988 ◽  
Vol 7 ◽  
pp. S93
Author(s):  
Kenji Kawano ◽  
Yoshihiro Watanabe ◽  
Shigeru Yamane
2020 ◽  
Vol 123 (3) ◽  
pp. 896-911 ◽  
Author(s):  
Liya Ma ◽  
Janahan Selvanayagam ◽  
Maryam Ghahremani ◽  
Lauren K. Hayrynen ◽  
Kevin D. Johnston ◽  
...  

Abnormal saccadic eye movements can serve as biomarkers for patients with several neuropsychiatric disorders. The common marmoset ( Callithrix jacchus) is becoming increasingly popular as a nonhuman primate model to investigate the cortical mechanisms of saccadic control. Recently, our group demonstrated that microstimulation in the posterior parietal cortex (PPC) of marmosets elicits contralateral saccades. Here we recorded single-unit activity in the PPC of the same two marmosets using chronic microelectrode arrays while the monkeys performed a saccadic task with gap trials (target onset lagged fixation point offset by 200 ms) interleaved with step trials (fixation point disappeared when the peripheral target appeared). Both marmosets showed a gap effect, shorter saccadic reaction times (SRTs) in gap vs. step trials. On average, stronger gap-period responses across the entire neuronal population preceded shorter SRTs on trials with contralateral targets although this correlation was stronger among the 15% “gap neurons,” which responded significantly during the gap. We also found 39% “target neurons” with significant saccadic target-related responses, which were stronger in gap trials and correlated with the SRTs better than the remaining neurons. Compared with saccades with relatively long SRTs, short-SRT saccades were preceded by both stronger gap-related and target-related responses in all PPC neurons, regardless of whether such response reached significance. Our findings suggest that the PPC in the marmoset contains an area that is involved in the modulation of saccadic preparation. NEW & NOTEWORTHY As a primate model in systems neuroscience, the marmoset is a great complement to the macaque monkey because of its unique advantages. To identify oculomotor networks in the marmoset, we recorded from the marmoset posterior parietal cortex during a saccadic task and found single-unit activities consistent with a role in saccadic modulation. This finding supports the marmoset as a valuable model for studying oculomotor control.


1982 ◽  
Vol 231 (2) ◽  
pp. 309-324
Author(s):  
Timothy D. Steege ◽  
Carol A. Robbins ◽  
Allen R. Wyler

2019 ◽  
Author(s):  
Liya Ma ◽  
Janahan Selvanayagam ◽  
Maryam Ghahremani ◽  
Lauren K. Hayrynen ◽  
Kevin D. Johnston ◽  
...  

ABSTRACTAbnormal saccadic eye movements can serve as biomarkers for patients with several neuropsychiatric disorders. To investigate cortical control mechanisms of saccadic responses, the common marmoset (Callithrix jacchus) is a promising non-human primate model. Their lissencephalic brain allows for accurate targeting of homologues of sulcal areas in the macaque brain. Here we recorded single unit activity in the posterior parietal cortex of two marmosets using chronic microelectrode arrays, while the monkeys performed a saccadic task with Gap trials (stimulus onset lagged fixation point offset by 200ms) interleaved with Step trials (fixation point disappeared when the peripheral stimulus appeared). Both marmosets showed a gap effect—shorter saccadic reaction times (SRTs) in Gap vs. Step trials. On average, stronger gap-period response across the entire neuronal population preceded shorter SRTs on trials with contralateral targets, although this correlation was stronger among the 15% ‘gap neurons’, which responded significantly during the gap. We also found 39% ‘target neurons’ with significant visual target-related responses, which were stronger in Gap trials and correlated with the SRTs better than the remaining cells. Compared with slow saccades, fast saccades were preceded by both stronger gap-related and target-related response in all PPC neurons, regardless of whether such response reached significance. Our findings suggest that the PPC in the marmoset contains an area that is involved in the modulation of saccadic preparation and plays roles comparable to those of area LIP in macaque monkeys in eye movements.SIGNIFICANCE STATEMENTAbnormal saccadic eye movements can serve as biomarkers for different neuropsychiatric disorders. So far, processes of cerebral cortical control of saccades are not fully understood. Non-human primates are ideal models for studying such processes, and the marmoset is especially advantageous since their smooth cortex permits laminar analyses of cortical microcircuits. Using electrode arrays implanted in the posterior parietal cortex of marmosets, we found neurons responsive to key periods of a saccadic task in a manner that contribute to cortical modulation of saccadic preparation. Notably, this signal was correlated with subsequent saccadic reaction times and was present in the entire neuronal population. We suggest that the marmoset model will shed new light on the cortical mechanisms of saccadic control.


2009 ◽  
Author(s):  
Philip Tseng ◽  
Cassidy Sterling ◽  
Adam Cooper ◽  
Bruce Bridgeman ◽  
Neil G. Muggleton ◽  
...  

2018 ◽  
Author(s):  
Imogen M Kruse

The near-miss effect in gambling behaviour occurs when an outcome which is close to a win outcome invigorates gambling behaviour notwithstanding lack of associated reward. In this paper I postulate that the processing of concepts which are deemed controllable is rooted in neurological machinery located in the posterior parietal cortex specialised for the processing of objects which are immediately actionable or controllable because they are within reach. I theorise that the use of a common machinery facilitates spatial influence on the perception of concepts such that the win outcome which is 'almost complete' is perceived as being 'almost within reach'. The perceived realisability of the win increases subjective reward probability and the associated expected action value which impacts decision-making and behaviour. This novel hypothesis is the first to offer a neurological model which can comprehensively explain many empirical findings associated with the near-miss effect as well as other gambling phenomena such as the ‘illusion of control’. Furthermore, when extended to other compulsive behaviours such as drug addiction, the model can offer an explanation for continued drug-seeking following devaluation and for the increase in cravings in response to perceived opportunity to self-administer, neither of which can be explained by simple reinforcement models alone. This paper therefore provides an innovative and unifying perspective for the study and treatment of behavioural and substance addictions.


Sign in / Sign up

Export Citation Format

Share Document