scholarly journals Single-unit activity in marmoset posterior parietal cortex in a gap saccade task

2020 ◽  
Vol 123 (3) ◽  
pp. 896-911 ◽  
Author(s):  
Liya Ma ◽  
Janahan Selvanayagam ◽  
Maryam Ghahremani ◽  
Lauren K. Hayrynen ◽  
Kevin D. Johnston ◽  
...  

Abnormal saccadic eye movements can serve as biomarkers for patients with several neuropsychiatric disorders. The common marmoset ( Callithrix jacchus) is becoming increasingly popular as a nonhuman primate model to investigate the cortical mechanisms of saccadic control. Recently, our group demonstrated that microstimulation in the posterior parietal cortex (PPC) of marmosets elicits contralateral saccades. Here we recorded single-unit activity in the PPC of the same two marmosets using chronic microelectrode arrays while the monkeys performed a saccadic task with gap trials (target onset lagged fixation point offset by 200 ms) interleaved with step trials (fixation point disappeared when the peripheral target appeared). Both marmosets showed a gap effect, shorter saccadic reaction times (SRTs) in gap vs. step trials. On average, stronger gap-period responses across the entire neuronal population preceded shorter SRTs on trials with contralateral targets although this correlation was stronger among the 15% “gap neurons,” which responded significantly during the gap. We also found 39% “target neurons” with significant saccadic target-related responses, which were stronger in gap trials and correlated with the SRTs better than the remaining neurons. Compared with saccades with relatively long SRTs, short-SRT saccades were preceded by both stronger gap-related and target-related responses in all PPC neurons, regardless of whether such response reached significance. Our findings suggest that the PPC in the marmoset contains an area that is involved in the modulation of saccadic preparation. NEW & NOTEWORTHY As a primate model in systems neuroscience, the marmoset is a great complement to the macaque monkey because of its unique advantages. To identify oculomotor networks in the marmoset, we recorded from the marmoset posterior parietal cortex during a saccadic task and found single-unit activities consistent with a role in saccadic modulation. This finding supports the marmoset as a valuable model for studying oculomotor control.

2019 ◽  
Vol 122 (4) ◽  
pp. 1765-1776 ◽  
Author(s):  
Maryam Ghahremani ◽  
Kevin D. Johnston ◽  
Liya Ma ◽  
Lauren K. Hayrynen ◽  
Stefan Everling

The common marmoset ( Callithrix jacchus) is a small-bodied New World primate increasing in prominence as a model animal for neuroscience research. The lissencephalic cortex of this primate species provides substantial advantages for the application of electrophysiological techniques such as high-density and laminar recordings, which have the capacity to advance our understanding of local and laminar cortical circuits and their roles in cognitive and motor functions. This is particularly the case with respect to the oculomotor system, as critical cortical areas of this network such as the frontal eye fields (FEF) and lateral intraparietal area (LIP) lie deep within sulci in macaques. Studies of cytoarchitecture and connectivity have established putative homologies between cortical oculomotor fields in marmoset and macaque, but physiological investigations of these areas, particularly in awake marmosets, have yet to be carried out. Here we addressed this gap by probing the function of posterior parietal cortex of the common marmoset with electrical microstimulation. We implanted two animals with 32-channel Utah arrays at the location of the putative area LIP and applied microstimulation while they viewed a video display and made untrained eye movements. Similar to previous studies in macaques, stimulation evoked fixed-vector and goal-directed saccades, staircase saccades, and eyeblinks. These data demonstrate that area LIP of the marmoset plays a role in the regulation of eye movements, provide additional evidence that this area is homologous with that of the macaque, and further establish the marmoset as a valuable model for neurophysiological investigations of oculomotor and cognitive control. NEW & NOTEWORTHY The macaque monkey has been the preeminent model for investigations of oculomotor control, but studies of cortical areas are limited, as many of these areas are buried within sulci in this species. Here we applied electrical microstimulation to the putative area LIP of the lissencephalic cortex of awake marmosets. Similar to the macaque, microstimulation evoked contralateral saccades from this area, supporting the marmoset as a valuable model for studies of oculomotor control.


2019 ◽  
Author(s):  
Maryam Ghahremani ◽  
Kevin D. Johnston ◽  
Liya Ma ◽  
Lauren K. Hayrynen ◽  
Stefan Everling

AbstractThe common marmoset (Callithrix jacchus) is a small-bodied New World primate, increasing in prominence as a model animal for neuroscience research. The lissencephalic cortex of this primate species provides substantial advantages for the application of electrophysiological techniques such as high-density and laminar recordings, which have the capacity to advance our understanding of local and laminar cortical circuits and their roles in cognitive and motor functions. This is particularly the case with respect to the oculomotor system, as critical cortical areas of this network such as the frontal eye fields (FEF) and lateral intraparietal area (LIP) lie deep within sulci in macaques. Studies of cytoarchitecture and connectivity have established putative homologies between cortical oculomotor fields in marmoset and macaque, but physiological investigations of these areas, particularly in awake marmosets, have yet to be carried out. Here, we addressed this gap by probing the function of posterior parietal cortex (PPC) of the common marmoset using electrical microstimulation. We implanted two animals with 32-channel Utah arrays at the location of the putative area LIP and applied microstimulation while they viewed a video display and made untrained eye movements. Similar to previous studies in macaques, stimulation evoked fixed-vector and goal-directed saccades, staircase saccades, and eye blinks. These data demonstrate that area LIP of the marmoset plays a role in the regulation of eye movements, provide additional evidence that this area is homologous with that of the macaque, and further establish the marmoset as valuable model for neurophysiological investigations of oculomotor and cognitive control.New & NoteworthyThe macaque monkey has been the preeminent model for investigations of oculomotor control, but studies of cortical areas are limited as many of these areas are buried within sulci in this species. Here we applied electrical microstimulation to the putative area LIP of the lissencephalic cortex of awake marmosets. Similar to the macaque, microstimulation evoked contralateral saccades from this area, supporting the marmoset as a valuable model for studies of oculomotor control.


2021 ◽  
Author(s):  
Lorenzo Diana ◽  
Patrick Pilastro ◽  
Edoardo N. Aiello ◽  
Aleksandra K. Eberhard-Moscicka ◽  
René M. Müri ◽  
...  

ABSTRACTIn the present work, we applied anodal transcranial direct current stimulation (tDCS) over the posterior parietal cortex (PPC) and frontal eye field (FEF) of the right hemisphere in healthy subjects to modulate attentional orienting and disengagement in a gap-overlap task. Both stimulations led to bilateral improvements in saccadic reaction times (SRTs), with larger effects for gap trials. However, analyses showed that the gap effect was not affected by tDCS. Importantly, we observed significant effects of baseline performance that may mediate side- and task-specific effects of brain stimulation.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Rikako Kato ◽  
Takuya Hayashi ◽  
Kayo Onoe ◽  
Masatoshi Yoshida ◽  
Hideo Tsukada ◽  
...  

AbstractPatients with damage to the primary visual cortex (V1) lose visual awareness, yet retain the ability to perform visuomotor tasks, which is called “blindsight.” To understand the neural mechanisms underlying this residual visuomotor function, we studied a non-human primate model of blindsight with a unilateral lesion of V1 using various oculomotor tasks. Functional brain imaging by positron emission tomography showed a significant change after V1 lesion in saccade-related visuomotor activity in the intraparietal sulcus area in the ipsi- and contralesional posterior parietal cortex. Single unit recordings in the lateral bank of the intraparietal sulcus (lbIPS) showed visual responses to targets in the contralateral visual field on both hemispheres. Injection of muscimol into the ipsi- or contralesional lbIPSs significantly impaired saccades to targets in the V1 lesion-affected visual field, differently from previous reports in intact animals. These results indicate that the bilateral lbIPSs contribute to visuomotor function in blindsight.


1982 ◽  
Vol 231 (2) ◽  
pp. 309-324
Author(s):  
Timothy D. Steege ◽  
Carol A. Robbins ◽  
Allen R. Wyler

1980 ◽  
Vol 3 (4) ◽  
pp. 485-499 ◽  
Author(s):  
James C. Lynch

AbstractPosterior parietal cortex has traditionally been considered to be a sensory association area in which higher-order processing and intermodal integration of incoming sensory information occurs. In this paper, evidence from clinical reports and from lesion and behavioral-electrophysiological experiments using monkeys is reviewed and discussed in relation to the overall functional organization of posterior parietal association cortex, and particularly with respect to a proposed posterior parietal mechanism concerned with the initiation and control of certain classes of eye and limb movements. Preliminary data from studies of the effects of posterior parietal lesions on oculomotor control in monkeys are reported.The behavioral effects of lesions of posterior parietal cortex in monkeys have been found to be similar to those which follow analogous damage of the minor hemisphere in humans, while behavioral-electrophysiological experiments have disclosed classes of neurons in this area which have functional properties closely related to the behavioral acts that are disrupted by lesions of the area. On the basis of current data from these areas of study, it is proposed that the sensory association model of posterior parietal function is inadequate to account for the complexities of the present evidence. Instead, it now appears that many diverse neural mechanisms are locatedin partin parietal cortex, that some of these mechanisms are involved in sensory processing and perceptual functions, but that others participate in motor control, and that still others are involved in attentional, motivational, or emotional processes. It is further proposed that the elementary units of these various neural mechanisms are distributed within posterior parietal cortex according to the columnar hypothesis of Mountcastle.


2019 ◽  
Author(s):  
Liya Ma ◽  
Janahan Selvanayagam ◽  
Maryam Ghahremani ◽  
Lauren K. Hayrynen ◽  
Kevin D. Johnston ◽  
...  

ABSTRACTAbnormal saccadic eye movements can serve as biomarkers for patients with several neuropsychiatric disorders. To investigate cortical control mechanisms of saccadic responses, the common marmoset (Callithrix jacchus) is a promising non-human primate model. Their lissencephalic brain allows for accurate targeting of homologues of sulcal areas in the macaque brain. Here we recorded single unit activity in the posterior parietal cortex of two marmosets using chronic microelectrode arrays, while the monkeys performed a saccadic task with Gap trials (stimulus onset lagged fixation point offset by 200ms) interleaved with Step trials (fixation point disappeared when the peripheral stimulus appeared). Both marmosets showed a gap effect—shorter saccadic reaction times (SRTs) in Gap vs. Step trials. On average, stronger gap-period response across the entire neuronal population preceded shorter SRTs on trials with contralateral targets, although this correlation was stronger among the 15% ‘gap neurons’, which responded significantly during the gap. We also found 39% ‘target neurons’ with significant visual target-related responses, which were stronger in Gap trials and correlated with the SRTs better than the remaining cells. Compared with slow saccades, fast saccades were preceded by both stronger gap-related and target-related response in all PPC neurons, regardless of whether such response reached significance. Our findings suggest that the PPC in the marmoset contains an area that is involved in the modulation of saccadic preparation and plays roles comparable to those of area LIP in macaque monkeys in eye movements.SIGNIFICANCE STATEMENTAbnormal saccadic eye movements can serve as biomarkers for different neuropsychiatric disorders. So far, processes of cerebral cortical control of saccades are not fully understood. Non-human primates are ideal models for studying such processes, and the marmoset is especially advantageous since their smooth cortex permits laminar analyses of cortical microcircuits. Using electrode arrays implanted in the posterior parietal cortex of marmosets, we found neurons responsive to key periods of a saccadic task in a manner that contribute to cortical modulation of saccadic preparation. Notably, this signal was correlated with subsequent saccadic reaction times and was present in the entire neuronal population. We suggest that the marmoset model will shed new light on the cortical mechanisms of saccadic control.


Sign in / Sign up

Export Citation Format

Share Document