P-382 Effect of bile acids on major histocompatibility complex (MHC) class I gene expression

1995 ◽  
Vol 3 ◽  
pp. S132
Author(s):  
F HIRANO
1991 ◽  
Vol 11 (8) ◽  
pp. 4217-4227 ◽  
Author(s):  
J D Weissman ◽  
D S Singer

A novel regulatory element which contributes to the regulation of quantitative, tissue-specific differences in gene expression has been found between -771 and -676 bp upstream of the major histocompatibility complex (MHC) class I gene, PD1. Molecular dissection of this element reveals the presence of two overlapping functional activities: an enhancer and a silencer. Distinct nuclear factors bind to the overlapping enhancer and silencer DNA sequence elements within the regulatory domain. The levels of factors binding the silencer DNA sequence in different cell types are inversely related to levels of class I expression; in contrast, factors binding the enhancer DNA sequence can be detected in all cells. In cultured cell lines, inhibition of protein synthesis leads to the rapid loss of silencer complexes, with a concomitant increase in both enhancer complexes and MHC class I RNA. From these data, we conclude that a labile silencer factor competes with a constitutively expressed, stable enhancer factor for overlapping DNA-binding sites; the relative abundance of the silencer factor contributes to establishing steady-state levels of MHC class I gene expression.


1991 ◽  
Vol 11 (8) ◽  
pp. 4217-4227 ◽  
Author(s):  
J D Weissman ◽  
D S Singer

A novel regulatory element which contributes to the regulation of quantitative, tissue-specific differences in gene expression has been found between -771 and -676 bp upstream of the major histocompatibility complex (MHC) class I gene, PD1. Molecular dissection of this element reveals the presence of two overlapping functional activities: an enhancer and a silencer. Distinct nuclear factors bind to the overlapping enhancer and silencer DNA sequence elements within the regulatory domain. The levels of factors binding the silencer DNA sequence in different cell types are inversely related to levels of class I expression; in contrast, factors binding the enhancer DNA sequence can be detected in all cells. In cultured cell lines, inhibition of protein synthesis leads to the rapid loss of silencer complexes, with a concomitant increase in both enhancer complexes and MHC class I RNA. From these data, we conclude that a labile silencer factor competes with a constitutively expressed, stable enhancer factor for overlapping DNA-binding sites; the relative abundance of the silencer factor contributes to establishing steady-state levels of MHC class I gene expression.


2006 ◽  
Vol 189 (3) ◽  
pp. 605-615 ◽  
Author(s):  
C Giuliani ◽  
M Saji ◽  
I Bucci ◽  
G Fiore ◽  
M Liberatore ◽  
...  

Increased major histocompatibility complex (MHC) class I gene expression in nonimmune cell ‘target tissues’ involved in organ-specific diseases may be important in the pathogenesis of autoimmune diseases. This possibility in part evolves from studies of cultured thyrocytes where properties appear relevant to the development of thyroid autoimmune disease. In FRTL-5 rat thyroid cells in continuous culture, hormones and growth factors that regulate cell growth and function specifically decrease MHC class I gene expression. We hypothesized that this could reflect a mechanism to preserve self-tolerance and prevent autoimmune disease. The mechanisms of action of some of these hormones, namely TSH and hydrocortisone, have been already characterized. In this report, we show that IGF-I transcriptionally downregulates MHC class I gene expression and that its action is similar to that of insulin. The two hormones have a complex effect on the promoter of the MHC class I gene, PD1. In fact, they decrease the full promoter activity, but upregulate the activity of deleted mutants that have lost an upstream, tissue-specific regulatory region but still retain the enhancer A region. We show that insulin/IGF-I promotes the interactions of the p50/p65 subunits of NF-κB and AP-1 family members with these two regions, and that the tissue-specific region acts as a dominant silencer element on insulin/IGF-I regulation of promoter activity. These observations may be important to understand how MHC class I gene transcription is regulated in the cells.


2009 ◽  
Vol 82 (1) ◽  
pp. 48-56 ◽  
Author(s):  
Julie Doyle ◽  
Shirley A. Ellis ◽  
Grace M. O’Gorman ◽  
Ines Maria Aparicio Donoso ◽  
Patrick Lonergan ◽  
...  

1997 ◽  
Vol 272 (32) ◽  
pp. 20096-20107 ◽  
Author(s):  
Motoyasu Saji ◽  
Minho Shong ◽  
Giorgio Napolitano ◽  
Lisa A. Palmer ◽  
Shin-Ichi Taniguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document