down regulation
Recently Published Documents


TOTAL DOCUMENTS

12524
(FIVE YEARS 2642)

H-INDEX

160
(FIVE YEARS 31)

2022 ◽  
Vol 62 ◽  
pp. 101044
Author(s):  
Rudineia Toazza ◽  
Augusto Buchweitz ◽  
Alexandre Rosa Franco ◽  
Nathalia Bianchini Esper ◽  
Giovanni Abrahão Salum ◽  
...  

2022 ◽  
Vol 12 (4) ◽  
pp. 739-746
Author(s):  
Zhihong Qiu ◽  
Li Yan ◽  
Juan Xu ◽  
Xiaojun Qian

Objective: The aim of our research was to evaluate Nrf2 in COPD treatment and relative mechanism by vivo study. Materials: The mice were divided into Normal, Model and CCL16 groups. Measuring Pathology and goblet cell number by HE or AB/PAS staining; Evaluating apoptosis cell number by TUNEL assay; using flow separation to analysis inflammatory cells in difference groups; MAPK and NF-κB(p65) protein expression were evaluated by IHC assay in tissues; Total protein concentration of MUC5AC, Nrf2, Bax and Bcl-2 were evaluated by WB assay. Results: Compared with Normal group, the pathology was deteriorate and goblet cell number were significantly up-regulation in Model group, apoptosis goblet cell number were significantly depressed (P < 0.001), lympbocyte rate and hypertrophic rate were significantly down-regulation and Eosinophils rate, Macrophage rate and Neutrophils rate were significantly up-regulation (P < 0.001, respectively) in Model group. By IHC assay, MAPK and NF-κB(p65) proteins expression significantly increased (P < 0.001, respectively) in Model group; by WB assay, MUC5AC and Bcl-2 protein expression were significantly up-regulation and Nrf2 and Bax proteins expression were significantly down-regulation (P < 0.001, respectively) in Model group. Nrf2 supplement, the COPD were significantly improved with relative inflammatory cells rates significantly improving and relative proteins improving. Conclusion: Nrf2 could improve COPD by inducing goblet cell apoptosis increasing via regulation MAPK/NF-κB(p65) pathway in vivo study.


2023 ◽  
Vol 83 ◽  
Author(s):  
I. Wibowo ◽  
N. Marlinda ◽  
F. R. Nasution ◽  
R. E. Putra ◽  
N. Utami ◽  
...  

Abstract Although propolis has been reported for having anti-inflammatory activities, its effects on complement system has not been much studied. This research was conducted to find out the effects of Indonesian propolis on the expression levels of C3, C1r/s, Bf, MBL, and C6 in zebrafish larvae which were induced by lipopolysaccharide (LPS). Counting of macrophages migrating to yolk sac and liver histology were carried out. Larvae were divided into four groups: CON (cultured in E3 medium only), LPS (cultured in a medium containing 0.5 μg/L LPS), LPSIBU (cultured in a medium containing LPS, and then treated with 100 μg/L ibuprofen for 24 hours), and LPSPRO (cultured in a medium containing LPS, and then immersed in 14,000 μg/L propolis for 24 hours) groups. The results showed that complement gene expression in larvae from the LPSIBU and LPSPRO groups were generally lower than in larvae from the LPS group. The number of macrophage migrations to the yolk in the LPSPRO group was also lower than in the LPS group. Histological structure of liver in all groups were considered normal. This study shows that Indonesian propolis has the potential to be used as an alternative to the substitution of NSAIDs.


2022 ◽  
Vol 12 (2) ◽  
pp. 306-315
Author(s):  
Jie Song ◽  
Cheng Chen ◽  
Hui Zhang

Osteoarthritis (OA) is a chronic and inflammatory disease, leading to pain or even disability in severe cases. LncRNA PCGEM1 (PCGEM1) is reported to be dysregulated, serving as critical regulators in various human diseases, including OA. However, the biological role of PCGEM1 and its underlying mechanisms during OA remained unclear. In the present study, CHON-001 cells were exposed to interleukin (IL)-1β to construct the OA cell model. Expression of PCGEM1 and miR-152-3p in cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Corresponding commercial kits were used to measure the expressions of lactate dehydrogenase (LDH), inter-leukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. Protein levels of apoptosis-related proteins, cleaved-Caspase3 and Caspase3, were detected by Western blotting. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) tetrazolium (MTT) and flow cytometry assays were utilized for the determination of cell proliferation and apoptosis. The association between PCGEN1 and miR-152-3p was confirmed by a dual-luciferase reporter assay. From the results, PCGEM1 expression was significantly increased while miR-152-3p was inhibited in CHON-001 cells after IL-1β treatment. In addition, silencing of PCGEM1 could promote proliferation, inhibit the apoptosis, suppress LDH level and alleviate inflammation response caused by IL-1β in CHON-001 cells by sponging miR-152-3p. In a word, PCGEM1 down-regulation suppressed OA progression by the regulation of miR-152-3p expression, functioning as a potential therapeutic target for OA clinical treatment.


2022 ◽  
Vol 12 (2) ◽  
pp. 279-286
Author(s):  
Zhihong Qiu ◽  
Li Yan ◽  
Juan Xu ◽  
Xiaojun Qian

Purpose: The purpose of this study was to evaluate CC16 in COPD treatment and relative mechanism by vivo study. Materials and methods: The mice were divided into Normal, Model and CC16 groups. Measuring Pathology and goblet cell number by HE or AB/PAS staining; Evaluating apoptosis cell number by TUNEL assay; using flow separation to analysis inflammatory cells in difference groups; MAPK and NF-κB(p65) protein expression were evaluated by IHC assay in tissues; Total protein concentration of MUC5AC, CC16, Bax and Bcl-2 were evaluated by Western Blot (WB) assay. Results: Compared with Normal group, the pathology was deteriorate and goblet cell number were significantly up-regulation in Model group, apoptosis goblet cell number were significantly depressed (P < 0.001), lympbocyte rate and hypertrophic rate were significantly down-regulation and Eosinophils rate, Macrophage rate and Neutrophils rate were significantly up-regulation (P < 0.001, respectively) in Model group. By IHC assay, MAPK and NF-κB(p65) proteins expression were significantly increased (P < 0.001, respectively) in Model group; by WB assay, MUC5AC and Bcl-2 protein expression were significantly up-regulation and CC16 and Bax proteins expression were significantly down-regulation (P < 0.001, respectively) in Model group. CC16 supplement, the COPD were significantly improved with relative inflammatory cells rates significantly improving and relative proteins improving. Conclusion: CC16 could improve COPD by inducing goblet cell apoptosis increasing via regulation MAPK/NF-κB(p65) pathway In Vivo study.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
J. S. Nantongo ◽  
B. M. Potts ◽  
T. Frickey ◽  
E. Telfer ◽  
H. Dungey ◽  
...  

Abstract Background Plants are attacked by diverse insect and mammalian herbivores and respond with different physical and chemical defences. Transcriptional changes underlie these phenotypic changes. Simulated herbivory has been used to study the transcriptional and other early regulation events of these plant responses. In this study, constitutive and induced transcriptional responses to artificial bark stripping are compared in the needles and the bark of Pinus radiata to the responses from application of the plant stressor, methyl jasmonate. The time progression of the responses was assessed over a 4-week period. Results Of the 6312 unique transcripts studied, 86.6% were differentially expressed between the needles and the bark prior to treatment. The most abundant constitutive transcripts were related to defence and photosynthesis and their expression did not differ between the needles and the bark. While no differential expression of transcripts were detected in the needles following bark stripping, in the bark this treatment caused an up-regulation and down-regulation of genes associated with primary and secondary metabolism. Methyl jasmonate treatment caused differential expression of transcripts in both the bark and the needles, with individual genes related to primary metabolism more responsive than those associated with secondary metabolism. The up-regulation of genes related to sugar break-down and the repression of genes related with photosynthesis, following both treatments was consistent with the strong down-regulation of sugars that has been observed in the same population. Relative to the control, the treatments caused a differential expression of genes involved in signalling, photosynthesis, carbohydrate and lipid metabolism as well as defence and water stress. However, non-overlapping transcripts were detected between the needles and the bark, between treatments and at different times of assessment. Methyl jasmonate induced more transcriptional responses in the bark than bark stripping, although the peak of expression following both treatments was detected 7 days post treatment application. The effects of bark stripping were localised, and no systemic changes were detected in the needles. Conclusion There are constitutive and induced differences in the needle and bark transcriptome of Pinus radiata. Some expression responses to bark stripping may differ from other biotic and abiotic stresses, which contributes to the understanding of plant molecular responses to diverse stresses. Whether the gene expression changes are heritable and how they differ between resistant and susceptible families identified in earlier studies needs further investigation.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 154
Author(s):  
Naveed Mushtaq ◽  
Yong Wang ◽  
Junmiao Fan ◽  
Yi Li ◽  
Jing Ding

Environmental stresses negatively affect the growth and development of plants. Several previous studies have elucidated the response mechanisms of plants to drought and heat applied separately; however, these two abiotic stresses often coincide in environmental conditions. The global climate change pattern has projected that combined drought and heat stresses will tend to increase in the near future. In this study, we down-regulated the expression of a cytokinin receptor gene SlHK2 using RNAi and investigated the role of this gene in regulating plant responses to individual drought, heat, and combined stresses (drought + heat) in tomato. Compared to the wild-type (WT), SlHK2 RNAi plants exhibited fewer stress symptoms in response to individual and combined stress treatments. The enhanced abiotic stress tolerance of SlHK2 RNAi plants can be associated with increased membrane stability, osmoprotectant accumulation, and antioxidant enzyme activities. Furthermore, photosynthesis machinery was also protected in SlHK2 RNAi plants. Collectively, our results show that down-regulation of the cytokinin receptor gene SlHK2, and consequently cytokinin signaling, can improve plant tolerance to drought, heat, and combined stress.


2022 ◽  
Vol 23 (2) ◽  
pp. 630
Author(s):  
Shuliang Shi ◽  
Jing Li ◽  
Erzhuo Li ◽  
Wenqi Guo ◽  
Yao He ◽  
...  

Space microgravity condition has great physiological influence on astronauts’ health. The interaction of endothelial cells, which control vascular permeability and immune responses, is sensitive to mechanical stress. However, whether microgravity has significant effects on the physiological function of the endothelium has not been investigated. In order to address such a question, a clinostat-based culture model with a HUVEC monolayer being inside the culture vessel under the simulated microgravity (SMG) was established. The transmittance of FITC-tagged dextran was used to estimate the change of integrity of the adherens junction of the HUVEC monolayer. Firstly, we found that the permeability of the HUVEC monolayer was largely increased after SMG treatment. To elucidate the mechanism of the increased permeability of the HUVEC monolayer under SMG, the levels of total expression and activated protein levels of Rap1 and Rap2 in HUVEC cells, which regulate the adherens junction of endothelial cells, were detected by WB and GST pull-down after SMG. As the activation of both Rap1 and Rap2 was significantly decreased under SMG, the expression of Rap1GEF1 (C3G) and Rap1GAP in HUVECs, which regulate the activation of them, was further determined. The results indicate that both C3G and Rap1GAP showed a time-dependent increase with the expression of Rap1GAP being dominant at 48 h after SMG. The down-regulation of the expression of junctional proteins, VE-cadherin and β-catenin, in HUVEC cells was also confirmed by WB and immunofluorescence after SMG. To clarify whether up-regulation of Rap1GAP is necessary for the increased permeability of the HUVEC monolayer after SMG, the expression of Rap1GAP was knocked down by Rap1GAP-shRNA, and the change of permeability of the HUVEC monolayer was detected. The results indicate that knock-down of Rap1GAP reduced SMG-induced leaking of the HUVEC monolayer in a time-dependent manner. In total, our results indicate that the Rap1GAP-Rap signal axis was necessary for the increased permeability of the HUVEC monolayer along with the down-regulation of junctional molecules including VE-cadherin and β-catenin.


Sign in / Sign up

Export Citation Format

Share Document