Transgenerational Effects of Perinatal Hormonal Imprinting

Author(s):  
György Csaba
2019 ◽  
Vol 15 (1) ◽  
pp. 4-9
Author(s):  
G. Csaba

Hormonal imprinting takes place at the first encounter between the developing receptor and its target hormone and the encounter determines the receptor's binding capacity for life. In the critical period of development, when the window for imprinting is open, the receptor can be misdirected by related hormones, synthetic hormones, and industrial or communal endocrine disruptors which cause faulty hormonal imprinting with life-long consequences. Considering these facts, the hormonal imprinting is a functional teratogen provoking alterations in the perinatal (early postnatal) period. One single encounter with a low dose of the imprinter in the critical developmental period is enough for the formation of faulty imprinting, which is manifested later, in adult age. This has been justified in the immune system, in sexuality, in animal behavior and brain neurotransmitters etc. by animal experiments and human observations. This review points to the faulty hormonal imprinting in the case of bones (skeleton), by single or repeated treatments. The imprinting is an epigenetic alteration which is inherited to the progeny generations. From clinical aspect, the faulty imprinting can have a role in the pathological development of the bones as well, as in the risk of osteoporotic fractures, etc.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 681
Author(s):  
Changchun Dai ◽  
Michele Ricupero ◽  
Zequn Wang ◽  
Nicolas Desneux ◽  
Antonio Biondi ◽  
...  

The harlequin ladybird, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), is a generalist predator and an effective biocontrol agent of various insect pests that has been exploited for the control of aphid pests in the greenhouse and field. However, insecticides are widely used to control aphid pests worldwide and the potential non-target effects of sulfoxaflor and imidacloprid for controlling aphid pests towards this biocontrol agent are little known. Although both sulfoxaflor and imidacloprid act on nicotinic acetylcholine receptors of insects, sulfoxaflor has a novel chemical structure compared with neonicotinoids. We assessed the lethal, sublethal and transgenerational effects of sulfoxaflor and imidacloprid on H. axyridis simultaneously exposed via ingestion of contaminated prey and via residual contact on the host plant at LC20 and LC50 doses estimated for the cotton aphid. Imidacloprid significantly reduced the survival of H. axyridis adults compared to sulfoxaflor at the same lethal concentration against cotton aphid. Both concentrations of imidacloprid and sulfoxaflor reduced the proportion of ovipositing females, and both concentrations of imidacloprid and sulfoxaflor, except LC20 dose of sulfoxaflor, reduced the fecundity and fertility of the parental generation. In the progeny of imidacloprid- and sulfoxaflor-exposed parents, both tested LC50 concentrations significantly decreased the juvenile survival rate, and both concentrations of imidacloprid and sulfoxaflor, except LC20 dose of sulfoxaflor, prolonged the development time. Our findings provide evidence of the negative influence of imidacloprid and sulfoxaflor at low lethal concentrations on the harlequin ladybird and on the progeny of exposed individuals, i.e., transgenerational effects. Hence, these findings stress the importance of optimizing the applications of imidacloprid and sulfoxaflor for the control of aphid pests, aiming at preserving the biocontrol services provided by H. axyridis throughout the integrated pest management approach.


2021 ◽  
Vol 8 (7) ◽  
pp. 2002715
Author(s):  
Yingyun Gong ◽  
Yanfeng Xue ◽  
Xin Li ◽  
Zhao Zhang ◽  
Wenjun Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document