The Hahn–Jordan Decomposition Theorem, The Lebesgue Decomposition Theorem, and the Radon–Nikodym Theorem

Author(s):  
George Roussas
Author(s):  
IOANNIS ANTONIOU ◽  
COSTAS KARANIKAS ◽  
STANISLAV SHKARIN

Let 𝔐 be the Banach space of σ-additive complex-valued measures on an abstract measurable space. We prove that any closed, with respect to absolute continuity norm-closed, linear subspace L of 𝔐 is complemented and describe the unique complement, projection onto L along which has norm 1. Using this fact we prove a decomposition theorem, which includes the Jordan decomposition theorem, the generalized Radon–Nikodým theorem and the decomposition of measures into decaying and non-decaying components as particular cases. We also prove an analog of the Jessen–Wintner purity theorem for our decompositions.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Cai-Li Zhou ◽  
Fu-Gui Shi

The Lebesgue type decomposition theorem and weak Radon-Nikodým theorem for fuzzy valued measures in separable Banach spaces are established.


2015 ◽  
Vol 58 (2) ◽  
pp. 491-501 ◽  
Author(s):  
ZSIGMOND TARCSAY

AbstractWe offer a Lebesgue-type decomposition of a representable functional on a *-algebra into absolutely continuous and singular parts with respect to another. Such a result was proved by Zs. Szűcs due to a general Lebesgue decomposition theorem of S. Hassi, H.S.V. de Snoo, and Z. Sebestyén concerning non-negative Hermitian forms. In this paper, we provide a self-contained proof of Szűcs' result and in addition we prove that the corresponding absolutely continuous parts are absolutely continuous with respect to each other.


1969 ◽  
Vol 16 (3) ◽  
pp. 205-214
Author(s):  
Gavin Brown

Let n be a positive integer. We give an elementary construction for the nth variation, Vn(f), of a real valued continuous function f and prove an analogue of the classical Jordan decomposition theorem. In fact, let C[0, 1] denote the real valued continuous functions on the closed unit interval, let An denote the semi-algebra of non-negative functions in C[0, 1] whose first n differences are non-negative, and let Sn denote the difference algebra An - An. We show that Sn is precisely that subset of C[0, 1] on which Vn(f)<∞. (Theorem 1).


1986 ◽  
Vol 34 (2) ◽  
pp. 233-251
Author(s):  
D. N. Sarkhel

In terms of an arbitrary limit process T, defined abstractly for real functions, we define in a novel way a T-continuous integral of Perron type, admitting mean value theorems, integration by parts and the analogue of the Marcinkiewicz theorem for the ordinary Perron integral. The integral is shown to include, as particular cases, the various known continuous, approximately continuous, cesàro-continuous, mean-continuous and proximally Cesàro-continuous integrals of Perron and Denjoy types. An interesting generalization of the classical Lebesgue decomposition theorem is also obtained.


1972 ◽  
Vol 15 (1) ◽  
pp. 87-91 ◽  
Author(s):  
Michael Henle

This paper, by generalizing von Neumann's proof of the Radon-Nikodym and Lebesgue decomposition theorems [3], obtains analogous results for positive linear functional on a C* algebra. The concept of "absolute continuity" used and the Radon-Nikodym portion of the resulting theorem are due to Dye [2].


1996 ◽  
Vol 103 (2) ◽  
pp. 157 ◽  
Author(s):  
Israel Gohberg ◽  
Seymour Goldberg

Sign in / Sign up

Export Citation Format

Share Document