Aspartic proteases: Potential drug targets for anticancer drug development

2020 ◽  
pp. 121-163
Author(s):  
Ankit Ganeshpurkar ◽  
Subhajit Makar ◽  
Devendra Kumar ◽  
Srabanti Jana ◽  
Sushil Kumar Singh
2020 ◽  
Author(s):  
Nima Rajabi ◽  
Alexander Lund Nielsen ◽  
Christian Adam Olsen

The sirtuin enzymes are potential drug targets for intervention in a series of diseases. Efforts to inhibit enzymes of this class with thioamide- and thiourea-containing, substrate-mimicking entities have produced a number of high-affinity binders. However, less attention has been dedicated to the investigation of the stability of these inhibitors under various conditions. Here, we provide evidence of unprecedented degree of cleavage of short-chain epsilon-<i>N</i>-thioacyllysine modifications meant to target these sirtuins and further provide insights into the serum stability of compounds containing both thioamides and thioureas. Our study questions the utility short-chain thioamide-based inhibitors of sirtuins for drug development and points to application of mono-alkylated thiourea-based chemotypes as more promising for targeting sirtuins 1 and 3, in particular.


2019 ◽  
Author(s):  
Nima Rajabi ◽  
Alexander Lund Nielsen ◽  
Christian Adam Olsen

The sirtuin enzymes are potential drug targets for intervention in a series of diseases. Efforts to inhibit enzymes of this class with thioamide- and thiourea-containing, substrate-mimicking entities have produced a number of high-affinity binders. However, less attention has been dedicated to the investigation of the stability of these inhibitors under various conditions. Here, we provide evidence of unprecedented degree of cleavage of short-chain epsilon-<i>N</i>-thioacyllysine modifications meant to target these sirtuins and further provide insights into the serum stability of compounds containing both thioamides and thioureas. Our study questions the utility short-chain thioamide-based inhibitors of sirtuins for drug development and points to application of mono-alkylated thiourea-based chemotypes as more promising for targeting sirtuins 1 and 3, in particular.


2020 ◽  
Author(s):  
Nima Rajabi ◽  
Alexander Lund Nielsen ◽  
Christian Adam Olsen

The sirtuin enzymes are potential drug targets for intervention in a series of diseases. Efforts to inhibit enzymes of this class with thioamide- and thiourea-containing, substrate-mimicking entities have produced a number of high-affinity binders. However, less attention has been dedicated to the investigation of the stability of these inhibitors under various conditions. Here, we provide evidence of unprecedented degree of cleavage of short-chain epsilon-<i>N</i>-thioacyllysine modifications meant to target these sirtuins and further provide insights into the serum stability of compounds containing both thioamides and thioureas. Our study questions the utility short-chain thioamide-based inhibitors of sirtuins for drug development and points to application of mono-alkylated thiourea-based chemotypes as more promising for targeting sirtuins 1 and 3, in particular.


2014 ◽  
Vol 15 (3) ◽  
pp. 255-271 ◽  
Author(s):  
Rubem Sadok Menna-Barreto ◽  
Kele Belloze ◽  
Jonas Perales ◽  
Floriano Silva-Jr

2018 ◽  
Vol 17 (5) ◽  
pp. 325-337 ◽  
Author(s):  
Hojjat Borna ◽  
Kasim Assadoulahei ◽  
Gholamhossein Riazi ◽  
Asghar Beigi Harchegani ◽  
Alireza Shahriary

Background & Objective: Neurodegenrative diseases are among the most widespread lifethreatening disorders around the world in elderly ages. The common feature of a group of neurodegenerative disorders, called tauopathies, is an accumulation of microtubule associated protein tau inside the neurons. The exact mechanism underlying tauopathies is not well-understood but several factors such as traumatic brain injuries and genetics are considered as potential risk factors. Although tau protein is well-known for its key role in stabilizing and organization of axonal microtubule network, it bears a broad range of functions including DNA protection and participation in signaling pathways. Moreover, the flexible unfolded structure of tau facilitates modification of tau by a wide range of intracellular enzymes which in turn broadens tau function and interaction spectrum. The distinctive properties of tau protein concomitant with the crucial role of tau interaction partners in the progression of neurodegeneration suggest tau and its binding partners as potential drug targets for the treatment of neurodegenerative diseases. Conclusion: This review aims to give a detailed description of structure, functions and interactions of tau protein in order to provide insight into potential therapeutic targets for treatment of tauopathies.


2021 ◽  
Vol 7 (3) ◽  
pp. 518-534
Author(s):  
Lauren B. Arendse ◽  
Susan Wyllie ◽  
Kelly Chibale ◽  
Ian H. Gilbert

Sign in / Sign up

Export Citation Format

Share Document