CNS & Neurological Disorders - Drug Targets
Latest Publications


TOTAL DOCUMENTS

1747
(FIVE YEARS 338)

H-INDEX

62
(FIVE YEARS 7)

Published By Bentham Science

1871-5273

Author(s):  
Mohammed Asadullah Jahangir ◽  
Pooja Jain ◽  
Rishabh Verma ◽  
Mohamad Taleuzzaman ◽  
Mohamed Jawed Ahsan ◽  
...  

Abstract: Herbal medicines are being used by humans since the oldest civilizations and have been an integral part of traditional and alternative medicines. In recent times, pharmaceutical and biomedical scientists are taking interest in developing nutraceutical-based medicines to overcome the side effects and adverse drug reactions caused by allopathic medicines. Nutraceuticals have started occupying the global market. Nutraceuticals have gained widespread acceptance due to their efficacy in treating difficult to treat diseases, low toxicity, low cost, easy accessibility, etc. Safety and efficacy are other important factors in the commercialization process of nutraceuticals. Different novel advanced drug delivery systems have been constantly studied to improve the efficacy and bioavailability of medicines obtained from herbal sources. The transdermal drug delivery system provides a potent alternative to the conventional method of using nutraceuticals. The development of transdermal system-based nutraceuticals could provide the advantage of enhanced bioavailability, improved solubility, bypass the first-pass metabolism, and targeted delivery of drugs in brain-related disorders. It additionally provides the advantage of being non-invasive. This article reviews the potential effects of various nutraceuticals, in brain-related disorders as well as trends in transdermal nano-systems to deliver such nutraceuticals. We would also focus on advantages, application as well as recent United States-based patents which emphasized emerging interest towards transdermal nutraceuticals in brain disorders.


Author(s):  
Saima Owais ◽  
Yasir Hasan Siddique

Abstract: Parkinson’s disease (PD) is the second most debilitating neurodegenerative movement disorder. It is characterized by the presence of fibrillar alpha-synuclein amassed in the neurons, known as Lewy bodies. Certain cellular and molecular events are involved leading to the degeneration of dopaminergic neurons. However, the origin and implication of such events are still uncertain. Nevertheless, the role of microRNAs (miRNAs) as important biomarkers and therapeutic molecules is unquestionable. The most challenging task by far in PD treatment has been its late diagnosis followed by therapeutics. miRNAs are an emerging hope to meet the need of early diagnosis, thereby promising an improved movement symptom and prolonged life of the patients. The continuous efforts in discovering the role of miRNAs could be made possible by the utilisation of various animal models of PD. These models help us to understand insights into the mechanism of the disease. Moreover, miRNAs have been surfaced as therapeutically important molecules with distinct delivery systems enhancing their success rate. This review aims at providing an outline of different miRNAs implicated in either PD-associated gene regulation or involved in therapeutics.


Author(s):  
Erica Costantini ◽  
Srinivas Jarlapoodi ◽  
Federica Serra ◽  
Lisa Aielli ◽  
Haroon Khan ◽  
...  

Background: To date, much evidence has shown theincreased interest in natural molecules and traditional herbal medicine as alternative bioactive compounds to fight many inflammatory conditions, both in relation to immunomodulation and in terms of their wound healing potential. Bacopa monnieri is a herb that is used in the Ayurvedic medicine tradition for its anti-inflammatory activity. Objective: In this study, we evaluate the anti-inflammatory and regenerative properties of the Bacopa monnieri extract (BME) in vitro model of neuroinflammation. Methods: Neuronal SH-SY5Y cells were stimulated with TNF and IFN and used to evaluate the effect of BME on cell viability, cytotoxicity, cytokine gene expression, and healing rate. Results: Our results showed that BME protects against the Okadaic acid-induced cytotoxicity in SH-SY5Y cells. Moreover, in TNF and IFN primed cells, BME reduces IL-1, IL-6, COX-2, and iNOS, mitigates the mechanical trauma injury-induced damage, and accelerates the healing of wounds. Conclusion: This study indicates that BME might become a promising candidate for the treatment of neuroinflammation.


Author(s):  
Maria Antonietta Barbieri ◽  
Gianluca Bagnato ◽  
Carmelo Ioppolo ◽  
Antonio Giovanni Versace ◽  
Natasha Irrera

Abstract: The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) represents a public health problem worldwide. COVID-19 triggers a maladaptive cytokine release commonly referred to as cytokine storm syndrome with increased production of pro-inflammatory cytokines, which also appears to contribute to chronic neuro-inflammation and neurodegenerative disorders’ appearance, including multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease. In this context, SARS-CoV-2 might enter the central nervous system through binding with the angiotensin converting enzyme 2 receptors which are highly expressed in glial cells and neurons. For this reason, an association between COVID-19, its dependent cytokine storm, and the development and/or progression of neurodegenerative disorders might be evaluated. Therefore, the aim of this review was to assess the impact of COVID-19 on neurodegenerative disorders focusing on the possible increased mortality risk and/or deterioration of clinical course of pre-existing chronic neurological diseases in patients with dementia.


2022 ◽  
Vol 21 (1) ◽  
pp. 1-1
Author(s):  
Edoardo Spina


Sign in / Sign up

Export Citation Format

Share Document