short chain
Recently Published Documents


TOTAL DOCUMENTS

6695
(FIVE YEARS 2317)

H-INDEX

147
(FIVE YEARS 49)

2022 ◽  
Vol 62 ◽  
pp. 36-42
Author(s):  
Tong Xu ◽  
Xinyue Wu ◽  
Jia Liu ◽  
Jiayi Sun ◽  
Xiaobo Wang ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Eman Wehedy ◽  
Ibrahim F. Shatat ◽  
Souhaila Al Khodor

Chronic kidney disease (CKD) is an increasing global health burden. Current treatments for CKD include therapeutics to target factors that contribute to CKD progression, including renin–angiotensin–aldosterone system inhibitors, and drugs to control blood pressure and proteinuria control. Recently, associations between chronic disease processes and the human microbiota and its metabolites have been demonstrated. Dysbiosis—a change in the microbial diversity—has been observed in patients with CKD. The relationship between CKD and dysbiosis is bidirectional; gut-derived metabolites and toxins affect the progression of CKD, and the uremic milieu affects the microbiota. The accumulation of microbial metabolites and toxins is linked to the loss of kidney functions and increased mortality risk, yet renoprotective metabolites such as short-chain fatty acids and bile acids help restore kidney functions and increase the survival rate in CKD patients. Specific dietary interventions to alter the gut microbiome could improve clinical outcomes in patients with CKD. Low-protein and high-fiber diets increase the abundance of bacteria that produce short-chain fatty acids and anti-inflammatory bacteria. Fluctuations in the urinary microbiome are linked to increased susceptibility to infection and antibiotic resistance. In this review, we describe the potential role of the gut, urinary and blood microbiome in CKD pathophysiology and assess the feasibility of modulating the gut microbiota as a therapeutic tool for treating CKD.


2022 ◽  
Vol 8 ◽  
Author(s):  
Koen Beerens ◽  
Ophelia Gevaert ◽  
Tom Desmet

GDP-mannose 3,5-epimerase (GM35E, GME) belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily and catalyses the conversion of GDP-d-mannose towards GDP-l-galactose. Although the overall reaction seems relatively simple (a double epimerization), the enzyme needs to orchestrate a complex set of chemical reactions, with no less than 6 catalysis steps (oxidation, 2x deprotonation, 2x protonation and reduction), to perform the double epimerization of GDP-mannose to GDP-l-galactose. The enzyme is involved in the biosynthesis of vitamin C in plants and lipopolysaccharide synthesis in bacteria. In this review, we provide a clear overview of these interesting epimerases, including the latest findings such as the recently characterized bacterial and thermostable GM35E representative and its mechanism revision but also focus on their industrial potential in rare sugar synthesis and glycorandomization.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 436
Author(s):  
Cheng Li ◽  
Zhiqian Liu ◽  
Carolyn Bath ◽  
Leah Marett ◽  
Jennie Pryce ◽  
...  

Short-chain fatty acids (SCFA, C2-C5) in milk and serum are derived from rumen bacterial fermentation and, thus, have the potential to be used as biomarkers for the health status of dairy cows. Currently, there is no comprehensive and validated method that can be used to analyse all SCFAs in both bovine serum and milk. This paper reports an optimised protocol, combining 3-nitrophenylhydrazine (3-NPH) derivatisation and liquid chromatography-mass spectrometry (LC-MS) analysis for quantification of SCFA and β-hydroxybutyric acid (BHBA) in both bovine milk and bovine serum. This method is sensitive (limit of detection (LOD) ≤ 0.1 µmol/L of bovine milk and serum), accurate (recovery 84–115% for most analytes) and reproducible (relative standard deviation (RSD) for repeated analyses below 7% for most measurements) with a short sample preparation step. The application of this method to samples collected from a small cohort of animals allowed us to reveal a large variation in SCFA concentration between serum and milk and across different animals as well as the strong correlation of some SCFAs between milk and serum samples.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Agnieszka Dąbek-Drobny ◽  
Olga Kaczmarczyk ◽  
Michał Woźniakiewicz ◽  
Paweł Paśko ◽  
Justyna Dobrowolska-Iwanek ◽  
...  

Disturbances in the production of bacterial metabolites in the intestine have been reported in diseases associated with dysbiosis, such as inflammatory bowel diseases (IBDs) that include two conditions: Crohn disease (CD) and ulcerative colitis (UC). Short-chain fatty acids (SCFAs) are the main dietary-fiber-derived bacterial metabolites associated with the course of intestinal inflammation. In this study, we assessed the relationship between body mass index (BMI), the type of diet used, and changes in fecal SCFA levels in patients with IBD. We performed nutritional assessments using a nutritional questionnaire and determined fecal SCFA levels in 43 patients with UC, 18 patients with CD, and 16 controls. Our results revealed that subjects with a BMI > 24.99 kg/m2 had higher levels of isobutyric acid, whereas those with a BMI < 18.5 kg/m2 had lower level of butyric, isovaleric, and propionic acids. Furthermore, we observed higher levels of valeric acid in controls than in IBD patients. We did not reveal a relationship between a specific SCFA and the type of diet, but eating habits appear to be related to the observed changes in the SCFA profile depending on BMI. In conclusion, we demonstrated that BMI is associated with SCFA levels in patients with IBD.


Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 149
Author(s):  
Haibo Fu ◽  
Wenjing Li

The division of hard and soft feces is an effective digestion strategy in the order Lagomorpha. Although previous studies have reported that hard and soft feces differ in morphology and component, the discrepancy in the microbiome remains unclear. This study explored the microbiomes of hard and soft feces in plateau pikas by sequencing the V3 and V4 regions of 16S rDNA. We found that hard feces harbored higher Firmicutes, while soft feces harbored higher Akkermansia. Increased rare bacterial taxa were observed in hard feces compared with soft feces. Moreover, hard and soft feces displayed a greater difference in terms of core operational taxonomy units (OTUs) compared to the total OTUs. The soft feces showed enhancements in all predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) functions, indicating an advancing microbial metabolism compared to hard feces. The significantly upregulated pathways in soft feces were mainly enriched in metabolism of energy and carbohydrate, glycan biosynthesis, cofactors and vitamins, and amino acids—all of which are associated with increased contents of microbial proteins, vitamins, and short-chain fatty acids. Our study reports, for the first time, the differential microbiomes between hard and soft feces of pikas and provides direction for the future studies on cecotrophy.


BMC Neurology ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Gang Wu ◽  
Zhengli Jiang ◽  
Yaling Pu ◽  
Shiyong Chen ◽  
Tingling Wang ◽  
...  

Abstract Background Parkinson’s disease (PD) is associated with enteric nervous system dysfunction and gut microbiota dysbiosis. Short-chain fatty acids (SCFAs), derived from gut microbiota, are supposed to anticipate PD pathogenesis via the pathway of spinal cord and vagal nerve or the circulatory system. However, the serum concentration of SCFAs in PD patients is poorly known. This study aims to investigate the exact level of SCFAs in PD patients and its correlation with Parkinson’s symptoms. Methods 50 PD patients and 50 healthy controls were recruited, and their demographic and clinical characteristics were collected. The serum concentration of SCFAs was detected using a gas chromatography-mass spectrometer. SCFAs were compared between PD and control groups. The correlation between serum SCFAs and Parkinson’s symptoms and the potential effects of medications on the serum SCFAs was analyzed. Results Serum propionic acid, butyric acid and caproic acid were lower, while heptanoic acid was higher in PD patients than in control subjects. However, only the serum level of propionic acid was correlated with Unified Parkinson’s Disease Rating Scale (UPDRs) part III score (R = -0.365, P = 0.009), Mini-mental State Examination (MMSE) score (R = -0.416, P = 0.003), and Hamilton Depression Scale (HAMD) score (R = 0.306, P = 0.03). There was no correlation between other serum SCFAs and motor complications. The use of trihexyphenidyl or tizanidine increased the serum concentration of propionic acid. Conclusions Serum SCFAs are altered in PD patients, and the decrease of serum propionic acid level is correlated with motor symptoms, cognitive ability and non-depressed state. Thus, the gut microbial-derived SCFAs potentially affect Parkinson’s symptoms through the blood circulation. Propionic acid supplementation might ameliorate motor and non-motor symptoms of PD patients, although clinical trials are needed to test this hypothesis.


2022 ◽  
Author(s):  
Jialin Liu ◽  
Yichao Fang ◽  
Lixun Cui ◽  
Zhongzhao Wang ◽  
Yusha Luo ◽  
...  

Abstract Background: Gut microbiota has emerged as a crucial target of gut-brain axis to influence brain and behavior and also has been closely connected with depression. Zhi-Zi-Chi decoctions (ZZCD), as a classic oral formula in clinic prescribed to clear heat and relieve restlessness traditionally, is widely applied in depression treatment nowadays. However, the underlying mechanism in the antidepressant activity of ZZCD remains largely unknown. Our previous study revealed that isoflavones, the bioactive constituents of Semen Sojae Praeparatum, benefited health by regulating the gut microbiota, which introduced the gut microbiota into understanding the mechanism of Traditional Chinese Medicine (TCM). Hence, in the present study, we aimed to investigate the antidepressant mechanism of ZZCD by focusing on the gut microbiota. Results: A classic depression model of chronic mild unpredictable stress (CUMS) was established in rats based on the results of behavioral tests and hippocampal histomorphology. 16S rRNA sequencing analysis indicated that ZZCD could increase short-chain fatty acid-producing and anti-inflammatory bacteria and reduce inflammatory and tryptophan-metabolizing bacteria, which reflected the changes of short-chain fatty acids (SCFAs), inflammation and tryptophan metabolism from the perspective of the gut microbiota. Furthermore, ZZCD reversed the alterations of BDNF, TNF-α, pro-inflammatory cytokines and neurotransmitters in the gut, blood and brain along the brain-gut axis and restored the decrease of butyrate in cecal content caused by CUMS. Then, butyrate was utilized to validate its ameliorative effect on pathological characteristics of depressive rats. Conclusions: Taken together, these results show that ZZCD exhibits antidepressant effect through modulating gut microbiota to facilitate the production of butyrate, which further regulate anti-inflammation, neurotransmitters, endocrine and BDNF along the gut-brain axis. Hence, this study fills the gap of the antidepressive mechanism of ZZCD in the light of the brain-gut axis and established a multi-targets and multi-levels platform eventually for further research into the mechanism of other TCM efficacy.


Neurology ◽  
2022 ◽  
pp. 10.1212/WNL.0000000000013225
Author(s):  
Szu-Ju Chen ◽  
Chieh-Chang Chen ◽  
Hsin-Yu Liao ◽  
Ya-Ting Lin ◽  
Yu-Wei Wu ◽  
...  

Background and Objectives:Short-chain fatty acids (SCFAs) are gut microbial metabolites that promote the disease process in a rodent model of Parkinson’s disease (PD), but fecal levels of SCFAs in PD patients are reduced. Simultaneous assessments of fecal and plasma SCFA levels, and their inter-relationships with the PD disease process are scarce. We aimed to compare fecal and plasma levels of different SCFAs subtypes in PD patients and healthy controls to delineate their interrelations and link to gut microbiota changes and clinical severity of PD.Methods:A cohort of 96 PD patients and 85 controls were recruited from National Taiwan University Hospital. Fecal and plasma concentrations of SCFAs were measured using chromatography and mass spectrometry. Gut microbiota was analyzed using metagenomic shotgun sequencing. Body mass index and medical co-morbidities were evaluated, and dietary information was obtained using a food frequency questionnaire. To assess motor and cognitive impairment, we used the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) and the Mini-Mental Status Examination (MMSE).Results:Compared with controls, PD patients had lower fecal but higher plasma concentrations of acetate, propionate, and butyrate. After adjustment for age, sex, disease duration, and anti-PD medication dosage, MDS-UPDRS part III motor scores correlated with reduced fecal levels of acetate (ρ = -0.37, p = 0.012), propionate (ρ = -0.32, p = 0.036), and butyrate (ρ = -0.40, p = 0.004) and with increased plasma propionate concentrations (ρ = 0.26, p = 0.042) in PD patients. MMSE scores negatively correlated with plasma levels of butyrate (ρ = -0.09, p = 0.027) and valerate (ρ = -0.032, p = 0.033) after adjustment for confounders. SCFAs-producing gut bacteria correlated positively with fecal levels of SCFAs in healthy controls but revealed no association in patients with PD. In the PD patient group, the abundance of pro-inflammatory microbes, such as Clostridiales bacterium NK3B98 and Ruminococcus sp. AM07-15, significantly correlated with decreased fecal levels and increased plasma levels of SCFAs, especially propionic acid.Discussion:Reductions in fecal SCFAs but increased plasma SCFAs were observed in PD patients and corelated to specific gut microbiota changes and the clinical severity of PD.Classification of evidence:This study provides Class III evidence that gut metabolite SCFAs distinguish between PD patients and controls, and are associated with disease severity in patients with PD.


Sign in / Sign up

Export Citation Format

Share Document