A solution for the neutrosophic linear programming problem with a new ranking function

Author(s):  
Majid Darehmiraki
Author(s):  
Rasha Jalal

The aim of this paper is to suggest a solution procedure to fractional programming problem based on new ranking function (RF) with triangular fuzzy number (TFN) based on alpha cuts sets of fuzzy numbers. In the present procedure the linear fractional programming (LFP) problems is converted into linear programming problems. We concentrate on linear programming problem problems in which the coefficients of objective function are fuzzy numbers, the right- hand side are fuzzy numbers too, then solving these linear programming problems by using a new ranking function. The obtained linear programming problem can be solved using win QSB program (simplex method) which yields an optimal solution of the linear fractional programming problem. Illustrated examples and comparisons with previous approaches are included to evince the feasibility of the proposed approach.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Aihong Ren

This paper is concerned with a class of fully fuzzy bilevel linear programming problems where all the coefficients and decision variables of both objective functions and the constraints are fuzzy numbers. A new approach based on deviation degree measures and a ranking function method is proposed to solve these problems. We first introduce concepts of the feasible region and the fuzzy optimal solution of a fully fuzzy bilevel linear programming problem. In order to obtain a fuzzy optimal solution of the problem, we apply deviation degree measures to deal with the fuzzy constraints and use a ranking function method of fuzzy numbers to rank the upper and lower level fuzzy objective functions. Then the fully fuzzy bilevel linear programming problem can be transformed into a deterministic bilevel programming problem. Considering the overall balance between improving objective function values and decreasing allowed deviation degrees, the computational procedure for finding a fuzzy optimal solution is proposed. Finally, a numerical example is provided to illustrate the proposed approach. The results indicate that the proposed approach gives a better optimal solution in comparison with the existing method.


2016 ◽  
Vol 22 (91) ◽  
pp. 1
Author(s):  
سرمد علوان صالح

Several authors have used ranking function for solving linear programming problem. In This paper is proposed two ranking function for solving fuzzy linear programming and compare these two approach with trapezoidal fuzzy number .The proposed approach is very easy to understand and it can applicable, also the data were chosen from general company distribution of dairy (Canon company) was proposed test approach and compare; This paper prove that the second proposed approach is better to give the results and satisfy the minimal cost using Q.M. Software  


2017 ◽  
Vol 27 (3) ◽  
pp. 563-573 ◽  
Author(s):  
Rajendran Vidhya ◽  
Rajkumar Irene Hepzibah

AbstractIn a real world situation, whenever ambiguity exists in the modeling of intuitionistic fuzzy numbers (IFNs), interval valued intuitionistic fuzzy numbers (IVIFNs) are often used in order to represent a range of IFNs unstable from the most pessimistic evaluation to the most optimistic one. IVIFNs are a construction which helps us to avoid such a prohibitive complexity. This paper is focused on two types of arithmetic operations on interval valued intuitionistic fuzzy numbers (IVIFNs) to solve the interval valued intuitionistic fuzzy multi-objective linear programming problem with pentagonal intuitionistic fuzzy numbers (PIFNs) by assuming differentαandβcut values in a comparative manner. The objective functions involved in the problem are ranked by the ratio ranking method and the problem is solved by the preemptive optimization method. An illustrative example with MATLAB outputs is presented in order to clarify the potential approach.


Sign in / Sign up

Export Citation Format

Share Document