Hidden extreme multistability generated from a novel memristive two-scroll chaotic system

Author(s):  
Victor Kamdoum Tamba ◽  
Francois Kapche Tagne ◽  
Arsene Loic Mbanda Biamou ◽  
Manuela Corazon Nkeing ◽  
Armand Nzeukou Takougang
2018 ◽  
Vol 54 (13) ◽  
pp. 808-810 ◽  
Author(s):  
Lu Wang ◽  
Sen Zhang ◽  
Yi‐Cheng Zeng ◽  
Zhi‐Jun Li

2018 ◽  
Vol 28 (13) ◽  
pp. 1850167 ◽  
Author(s):  
Sen Zhang ◽  
Yicheng Zeng ◽  
Zhijun Li ◽  
Chengyi Zhou

Recently, the notion of hidden extreme multistability and hidden attractors is very attractive in chaos theory and nonlinear dynamics. In this paper, by utilizing a simple state feedback control technique, a novel 4D fractional-order hyperchaotic system is introduced. Of particular interest is that this new system has no equilibrium, which indicates that its attractors are all hidden and thus Shil’nikov method cannot be applied to prove the existence of chaos for lacking hetero-clinic or homo-clinic orbits. Compared with other fractional-order chaotic or hyperchaotic systems, this new system possesses three unique and remarkable features: (i) The amazing and interesting phenomenon of the coexistence of infinitely many hidden attractors with respect to same system parameters and different initial conditions is observed, meaning that hidden extreme multistability arises. (ii) By varying the initial conditions and selecting appropriate system parameters, the striking phenomenon of antimonotonicity is first discovered, especially in such a fractional-order hyperchaotic system without equilibrium. (iii) An attractive special feature of the convenience of offset boosting control of the system is also revealed. The complex and rich hidden dynamic behaviors of this system are investigated by using conventional nonlinear analysis tools, including equilibrium stability, phase portraits, bifurcation diagram, Lyapunov exponents, spectral entropy complexity, and so on. Furthermore, a hardware electronic circuit is designed and implemented. The hardware experimental results and the numerical simulations of the same system on the Matlab platform are well consistent with each other, which demonstrates the feasibility of this new fractional-order hyperchaotic system.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ying Li ◽  
Xiaozhu Xia ◽  
Yicheng Zeng ◽  
Qinghui Hong

Chaotic systems with hidden multiscroll attractors have received much attention in recent years. However, most parts of hidden multiscroll attractors previously reported were repeated by the same type of attractor, and the composite of different types of attractors appeared rarely. In this paper, a memristor-based chaotic system, which can generate composite attractors with one up to six scrolls, is proposed. These composite attractors have different forms, similar to the Chua’s double scroll and jerk double scroll. Through theoretical analysis, we find that the new system has no fixed point; that is to say, all of the composite multiscroll attractors are hidden attractors. Additionally, some complicated dynamic behaviors including various hidden coexisting attractors, extreme multistability, and transient transition are explored. Moreover, hardware circuit using discrete components is implemented, and its experimental results supported the numerical simulations results.


AIP Advances ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 125204 ◽  
Author(s):  
Chuang Li ◽  
Fuhong Min ◽  
Qiusen Jin ◽  
Hanyuan Ma

2019 ◽  
Vol 120 ◽  
pp. 100-115 ◽  
Author(s):  
Brice Anicet Mezatio ◽  
Marceline Tingue Motchongom ◽  
Blaise Raoul Wafo Tekam ◽  
Romanic Kengne ◽  
Robert Tchitnga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document