circuit implementation
Recently Published Documents


TOTAL DOCUMENTS

582
(FIVE YEARS 139)

H-INDEX

32
(FIVE YEARS 6)

Author(s):  
Zeric Tabekoueng Njitacke ◽  
Jan Awrejcewicz ◽  
Balamurali Ramakrishnan ◽  
Karthikeyan Rajagopal ◽  
Jacques Kengne

AbstractBrain functions are sometimes emulated using some analog integrated circuits based on the organizational principle of natural neural networks. Neuromorphic engineering is the research branch devoted to the study and realization of such circuits with striking features. In this contribution, a novel small network of three neurons is introduced and investigated. The model is built from the coupling between two 2D Hindmarsh–Rose neurons through a 2D FitzHugh–Nagumo neuron. Thus, a heterogeneous coupled network is obtained. The biophysical energy released by the network during each electrical activity is evaluated. In addition, nonlinear analysis tools such as two-parameter Lyapunov exponent, bifurcation diagrams, the graph of the largest Lyapunov exponent, phase portraits, time series, as well as the basin of attractions are used to numerically investigate the network. It is found that the model can experience hysteresis justified by the simultaneous existence of three distinct electrical activities using the same set of parameters. Finally, the circuit implementation of the network is addressed in PSPICE to further support the obtained results.


2021 ◽  
Vol 136 (11) ◽  
Author(s):  
Jieyang Wang ◽  
Jun Mou ◽  
Huizhen Yan ◽  
Xingce Liu ◽  
Yanjie Ma ◽  
...  

2021 ◽  
Vol 67 (6 Nov-Dec) ◽  
Author(s):  
François Kapche Tagne ◽  
Guillaume Honoré KOM ◽  
Marceline Motchongom Tingue ◽  
Pierre Kisito Talla ◽  
V. Kamdoum Tamba

The dynamics of an integer-order and fractional-order Lorenz like system called Shimizu-Morioka system is investigated in this paper. It is shown thatinteger-order Shimizu-Morioka system displays bistable chaotic attractors, monostable chaotic attractors and coexistence between bistable and monostable chaotic attractors. For suitable choose of parameters, the fractional-order Shimizu-Morioka system exhibits bistable chaotic attractors, monostable chaotic attractors, metastable chaos (i.e. transient chaos) and spiking oscillations. The bifurcation structures reveal that the fractional-order derivative affects considerably the dynamics of Shimizu-Morioka system. The chain fractance circuit is used to designand implement the integer- and fractional-order Shimizu-Morioka system in Pspice. A close agreement is observed between PSpice based circuit simulations and numerical simulations analysis. The results obtained in this work were not reported previously in the interger as well as in fractional-order Shimizu-Morioka system and thus represent an important contribution which may help us in better understanding of the dynamical behavior of this class of systems.


Sign in / Sign up

Export Citation Format

Share Document