Extreme multistability in a memristor-based multi-scroll hyper-chaotic system

2016 ◽  
Vol 26 (7) ◽  
pp. 073107 ◽  
Author(s):  
Fang Yuan ◽  
Guangyi Wang ◽  
Xiaowei Wang
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ying Li ◽  
Xiaozhu Xia ◽  
Yicheng Zeng ◽  
Qinghui Hong

Chaotic systems with hidden multiscroll attractors have received much attention in recent years. However, most parts of hidden multiscroll attractors previously reported were repeated by the same type of attractor, and the composite of different types of attractors appeared rarely. In this paper, a memristor-based chaotic system, which can generate composite attractors with one up to six scrolls, is proposed. These composite attractors have different forms, similar to the Chua’s double scroll and jerk double scroll. Through theoretical analysis, we find that the new system has no fixed point; that is to say, all of the composite multiscroll attractors are hidden attractors. Additionally, some complicated dynamic behaviors including various hidden coexisting attractors, extreme multistability, and transient transition are explored. Moreover, hardware circuit using discrete components is implemented, and its experimental results supported the numerical simulations results.


AIP Advances ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 125204 ◽  
Author(s):  
Chuang Li ◽  
Fuhong Min ◽  
Qiusen Jin ◽  
Hanyuan Ma

Author(s):  
Victor Kamdoum Tamba ◽  
Francois Kapche Tagne ◽  
Arsene Loic Mbanda Biamou ◽  
Manuela Corazon Nkeing ◽  
Armand Nzeukou Takougang

2021 ◽  
pp. 2150458
Author(s):  
Xiaoxia Li ◽  
Chi Zheng ◽  
Xue Wang ◽  
Yingzi Cao ◽  
Guizhi Xu

In this paper, a new four-dimensional (4D) chaotic system with two cubic nonlinear terms is proposed. The most striking feature is that the new system can exhibit completely symmetric coexisting bifurcation behaviors and four symmetric coexisting attractors with the same Lyapunov exponents in all parameter ranges of the system when taking different initial states. Interestingly, these symmetric coexisting attractors can be considered as unusual symmetrical rotational coexisting attractors, which is a very fascinating phenomenon. Furthermore, by using a memristor to replace the coupling resistor of the new system, an interesting 4D memristive hyperchaotic system with one unstable origin is constructed. Of particular surprise is that it can exhibit four groups of extreme multistability phenomenon of infinitely many coexisting attractors of symmetric distribution about the origin. By using phase portraits, Lyapunov exponent spectra, and coexisting bifurcation diagrams, the dynamics of the two systems are fully analyzed and investigated. Finally, the electronic circuit model of the new system is designed for verifying the feasibility of the new chaotic system.


2019 ◽  
Vol 127 ◽  
pp. 354-363 ◽  
Author(s):  
Yunzhen Zhang ◽  
Zhong Liu ◽  
Huagan Wu ◽  
Shengyao Chen ◽  
Bocheng Bao

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lili Huang ◽  
Yanling Wang ◽  
Yicheng Jiang ◽  
Tengfei Lei

By introducing an ideal and active flux-controlled memristor and tangent function into an existing chaotic system, an interesting memristor-based self-replication chaotic system is proposed. The most striking feature is that this system has infinite line equilibria and exhibits the extreme multistability phenomenon of coexisting infinitely many attractors. In this paper, bifurcation diagrams and Lyapunov exponential spectrum are used to analyze in detail the influence of various parameter changes on the dynamic behavior of the system; it shows that the newly proposed chaotic system has the phenomenon of alternating chaos and limit cycle. Especially, transition behavior of the transient period with steady chaos can be also found for some initial conditions. Moreover, a hardware circuit is designed by PSpice and fabricated, and its experimental results effectively verify the truth of extreme multistability.


Sign in / Sign up

Export Citation Format

Share Document