Earthquake forecasting and time-dependent neo-deterministic seismic hazard assessment in Italy and surroundings

2022 ◽  
pp. 151-173
Author(s):  
Antonella Peresan ◽  
Leontina Romashkova
2008 ◽  
Author(s):  
G. F. Panza ◽  
M. Kouteva ◽  
F. Vaccari ◽  
A. Peresan ◽  
C. O. Cioflan ◽  
...  

2021 ◽  
Author(s):  
Enrico Brandmayr ◽  
Franco Vaccari ◽  
Giuliano Francesco Panza

AbstractThe Corsica-Sardinia lithospheric block is commonly considered as a region of very low seismicity and the scarce reported seismicity for the area has till now precluded the reliable assessment of its seismic hazard. The time-honored assumption has been recently questioned and the historical seismicity of Sardinia has been reevaluated. Even more, several seismogenic nodes capable of M5 + have been recognized in the Corsica-Sardinia block exploiting the morphostructural zonation technique, calibrated to earlier results obtained for the Iberian peninsula, which has structural lithospheric affinities with the Corsica-Sardinia block. All this allows now for the computation of reliable earthquake hazard maps at bedrock conditions exploiting the power of Neo Deterministic Seismic Hazard Assessment (NDSHA) evaluation. NDSHA relies upon the fundamental physics of wave generation and propagation in complex geologic structures and generates realistic time series from which several earthquake ground motion parameters can be readily extracted. NDSHA exploits in an optimized way all the available knowledge about lithospheric mechanical parameters, seismic history, seismogenic zones and nodes. In accordance with continuum mechanics, the tensor nature of earthquake ground motion is preserved computing realistic signals using structural models obtained by tomographic inversion and earthquake source information readily available in literature. The way to this approach has been open by studies focused on continental Italy and Sicily, where the agreement between hazard maps obtained using seismogenic zones, informed by earthquake catalog data, and the maps obtained using only seismogenic nodes are very good.


2020 ◽  
Vol 20 (3) ◽  
pp. 743-753
Author(s):  
Yu-Sheng Sun ◽  
Hsien-Chi Li ◽  
Ling-Yun Chang ◽  
Zheng-Kai Ye ◽  
Chien-Chih Chen

Abstract. Real-time probabilistic seismic hazard assessment (PSHA) was developed in this study in consideration of its practicability for daily life and the rate of seismic activity with time. Real-time PSHA follows the traditional PSHA framework, but the statistic occurrence rate is substituted by time-dependent seismic source probability. Over the last decade, the pattern informatics (PI) method has been developed as a time-dependent probability model of seismic source. We employed this method as a function of time-dependent seismic source probability, and we selected two major earthquakes in Taiwan as examples to explore real-time PSHA. These are the Meinong earthquake (ML 6.6) of 5 February 2016 and the Hualien earthquake (ML 6.2) of 6 February 2018. The seismic intensity maps produced by the real-time PSHA method facilitated the forecast of the maximum expected seismic intensity for the following 90 d. Compared with real ground motion data from the P-alert network, our seismic intensity forecasting maps showed considerable effectiveness. This result indicated that real-time PSHA is practicable and provides useful information that could be employed in the prevention of earthquake disasters.


2022 ◽  
pp. 559-581
Author(s):  
Tahmeed M. Al-Hussaini ◽  
Ishika N. Chowdhury ◽  
Hasan al Faysal ◽  
Sudipta Chakraborty ◽  
Franco Vaccari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document