In situ Peptide Mapping of Proteins and Polypeptides Separated by Polyacrylamide Gel Electrophoresis

Author(s):  
K Gooderham
1984 ◽  
Vol 4 (4) ◽  
pp. 779-790 ◽  
Author(s):  
D G Russell ◽  
D Miller ◽  
K Gull

The interphase cell of Crithidia fasciculata has three discrete tubulin populations: the subpellicular microtubules, the axonemal microtubules, and the nonpolymerized cytoplasmic pool protein. These three tubulin populations were independently and selectively purified, yielding, in each case, microtubule protein capable of self-assembly. All three preparations polymerized to form ribbons and sheets rather than the more usual microtubular structures. Analyses of the tubulin by two-dimensional polyacrylamide gel electrophoresis, isoelectric focusing, and peptide mapping indicated that the beta-tubulin complex remained constant regardless of source but that some heterogeneity was present in the alpha subunit. Cytoplasmic pool alpha tubulins (alpha 1/alpha 2) were the only alpha isotypes in the cytoplasm and also formed most of the alpha tubulin species in the pellicular fraction. Flagellar alpha tubulin (alpha 3) was the sole alpha isotype in the flagella; it appeared in small amounts in the pellicular fraction but was completely absent from the cytoplasm. In vitro translation products from polyadenylated RNA from C. fasciculata were also examined by two-dimensional polyacrylamide gel electrophoresis and possessed a protein corresponding to alpha 1/alpha 2 tubulin but lacked any alpha 3 tubulin. The alpha 3 polypeptide arose from a post-translational modification of a precursor polypeptide not identifiable by two-dimensional polyacrylamide gel electrophoresis as alpha 3. Peptide mapping data indicated that cytoplasmic alpha tubulin is the most likely precursor. These results demonstrate alpha-tubulin heterogeneity in this organism and also how close the relationship between flagellar and cytoskeletal tubulins can be among lower eucaryotes.


1978 ◽  
Vol 169 (2) ◽  
pp. 441-444 ◽  
Author(s):  
J Lumsden ◽  
J R Coggins

Evidence was obtained, from polyacrylamide-gel electrophoresis in the presence of urea and from peptide ‘mapping’ of specifically labelled cysteine-and methionine-containing peptides, that the two subunits of the arom multienzyme complex of Neurospora crassa are chemically very similar and possibly identical.


1984 ◽  
Vol 4 (4) ◽  
pp. 779-790
Author(s):  
D G Russell ◽  
D Miller ◽  
K Gull

The interphase cell of Crithidia fasciculata has three discrete tubulin populations: the subpellicular microtubules, the axonemal microtubules, and the nonpolymerized cytoplasmic pool protein. These three tubulin populations were independently and selectively purified, yielding, in each case, microtubule protein capable of self-assembly. All three preparations polymerized to form ribbons and sheets rather than the more usual microtubular structures. Analyses of the tubulin by two-dimensional polyacrylamide gel electrophoresis, isoelectric focusing, and peptide mapping indicated that the beta-tubulin complex remained constant regardless of source but that some heterogeneity was present in the alpha subunit. Cytoplasmic pool alpha tubulins (alpha 1/alpha 2) were the only alpha isotypes in the cytoplasm and also formed most of the alpha tubulin species in the pellicular fraction. Flagellar alpha tubulin (alpha 3) was the sole alpha isotype in the flagella; it appeared in small amounts in the pellicular fraction but was completely absent from the cytoplasm. In vitro translation products from polyadenylated RNA from C. fasciculata were also examined by two-dimensional polyacrylamide gel electrophoresis and possessed a protein corresponding to alpha 1/alpha 2 tubulin but lacked any alpha 3 tubulin. The alpha 3 polypeptide arose from a post-translational modification of a precursor polypeptide not identifiable by two-dimensional polyacrylamide gel electrophoresis as alpha 3. Peptide mapping data indicated that cytoplasmic alpha tubulin is the most likely precursor. These results demonstrate alpha-tubulin heterogeneity in this organism and also how close the relationship between flagellar and cytoskeletal tubulins can be among lower eucaryotes.


1980 ◽  
Vol 86 (3) ◽  
pp. 755-764 ◽  
Author(s):  
R W Kensler ◽  
D A Goodenough

A new method is presented for the isolation of an enriched fraction of mouse myocardial gap junctions without the use of exogenous proteases. The junctions appear well preserved morphologically and similar to their appearance in situ. Contaminants of the preparation include fragments of the fascia adherens region of the intercalated disk. SDS polyacrylamide gel electrophoresis of the preparation reveals seven major bands with apparent mol wt of 28,000; 31,000; 33,500; 43,000; 47,000; 49,000; and 57,000. Only the bands at 38,000; 31,000; 33,500; and possibly the diffuse band at 47,000 copurify with the morphologically assayed gap junctions. Evidence is presented that the peptides at 43,000 and 57,000 are contained within the contaminating fascia adherens.


Sign in / Sign up

Export Citation Format

Share Document