The role of membranes in function and dysfunction of intrinsically disordered amyloidogenic proteins

2022 ◽  
pp. 397-434
Author(s):  
Bani Kumar Pathak ◽  
Sandip Dey ◽  
Sukanya Mozumder ◽  
Jayati Sengupta
Author(s):  
M. Fayyaz Rehman ◽  
M. Jeeves ◽  
E. I. Hyde

AbstractIncC from the low-copy number plasmid RK2, is a member of the ParA family of proteins required for partitioning DNA in many bacteria and plasmids. It is an ATPase that binds DNA and its ParB protein partner, KorB. Together, the proteins move replicated DNA to appropriate cellular positions, so that each daughter cell inherits a copy on cell division. IncC from RK2 is expressed in two forms. IncC2 is homologous to bacterial ParA proteins, while IncC1 has an N-terminal extension of 105 amino acids and is similar in length to ParA homologues in other plasmids. We have been examining the role of this extension, here called IncC NTD. We present its backbone NMR chemical shift assignments and show that it is entirely intrinsically disordered. The assignments were achieved using C-detected, CON-based spectra, complemented by HNN spectra to obtain connectivities from three adjacent amino acids. We also observed evidence of deamidation of the protein at a GNGG sequence, to give isoAsp, giving 2 sets of peaks for residues up to 5 amino acids on either side of the modification. We have assigned resonances from around the position of modification for this form of the protein.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lasse Staby ◽  
Katrine Bugge ◽  
Rasmus Greve Falbe-Hansen ◽  
Edoardo Salladini ◽  
Karen Skriver ◽  
...  

Abstract Background Signal fidelity depends on protein–protein interaction–‘hubs’ integrating cues from large interactomes. Recently, and based on a common secondary structure motif, the αα-hubs were defined, which are small α-helical domains of large, modular proteins binding intrinsically disordered transcriptional regulators. Methods Comparative structural biology. Results We assign the harmonin-homology-domain (HHD, also named the harmonin N-terminal domain, NTD) present in large proteins such as harmonin, whirlin, cerebral cavernous malformation 2, and regulator of telomere elongation 1 to the αα-hubs. The new member of the αα-hubs expands functionality to include scaffolding of supra-modular complexes mediating sensory perception, neurovascular integrity and telomere regulation, and reveal novel features of the αα-hubs. As a common trait, the αα-hubs bind intrinsically disordered ligands of similar properties integrating similar cellular cues, but without cross-talk. Conclusion The inclusion of the HHD in the αα-hubs has uncovered new features, exemplifying the utility of identifying groups of hub domains, whereby discoveries in one member may cross-fertilize discoveries in others. These features make the αα-hubs unique models for decomposing signal specificity and fidelity. Using these as models, together with other suitable hub domain, we may advance the functional understanding of hub proteins and their role in cellular communication and signaling, as well as the role of intrinsically disordered proteins in signaling networks.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1690
Author(s):  
Louise Pinet ◽  
Nadine Assrir ◽  
Carine van Heijenoort

ErbBs are receptor tyrosine kinases involved not only in development, but also in a wide variety of diseases, particularly cancer. Their extracellular, transmembrane, juxtamembrane, and kinase folded domains were described extensively over the past 20 years, structurally and functionally. However, their whole C-terminal tails (CTs) following the kinase domain were only described at atomic resolution in the last 4 years. They were shown to be intrinsically disordered. The CTs are known to be tyrosine-phosphorylated when the activated homo- or hetero-dimers of ErbBs are formed. Their phosphorylation triggers interaction with phosphotyrosine binding (PTB) or Src Homology 2 (SH2) domains and activates several signaling pathways controling cellular motility, proliferation, adhesion, and apoptosis. Beyond this passive role of phosphorylated domain and site display for partners, recent structural and function studies unveiled active roles in regulation of phosphorylation and interaction: the CT regulates activity of the kinase domain; different phosphorylation states have different compaction levels, potentially modulating the succession of phosphorylation events; and prolines have an important role in structure, dynamics, and possibly regulatory interactions. Here, we review both the canonical role of the disordered CT domains of ErbBs as phosphotyrosine display domains and the recent findings that expand the known range of their regulation functions linked to specific structural and dynamic features.


2020 ◽  
Author(s):  
Paul Velander ◽  
Ling Wu ◽  
Sherry B. Hildreth ◽  
Nancy J. Vogelaar ◽  
Biswarup Mukhopadhyay ◽  
...  

Abstract Background: A range of neurodegenerative and related aging diseases, such as Alzheimer’s disease, Parkinson’s disease, and type 2 diabetes, are linked to toxic protein aggregation. Yet the mechanisms of protein aggregation inhibition by small molecule inhibitors remain poorly understood, in part because most protein targets of aggregation assembly are partially unfolded or intrinsically disordered, which hinders detailed structural characterization of protein-inhibitor complexes and structural-based mechanistic elucidation. Methods: Herein we employed a small molecule screening approach to identify inhibitors against three prototype amyloidogenic proteins in neurodegeneration and related proteinopathies: amylin, Ab and tau. We further systematically investigated selected class of inhibitors under aerobic and anaerobic conditions to uncover a key determinant of the inhibitory activities.Results: One remarkable class of inhibitors identified from all three parallel screenings against different amyloidogenic proteins was catechol-containing compounds and redox-related quinones/anthraquinones. Further mechanistic studies determined that the redox state of the broad class of catechol-containing compounds is a key determinant of the amyloid inhibitor activities. Conclusion: Our small molecule library screening platform was able to identify a broad class of amyloid inhibitors. Redox was found to be a key factor not only regulating the inhibitory activities but also involving the mechanism of inhibition. The molecular insights we gained not only explain why a large number of catechol-containing natural compounds, often enriched in healthy diet, have anti-neurodegeneration and anti-aging activities, but also could guide the rational design of therapeutic or nutraceutical strategies to target a broad range of neurodegenerative and related aging diseases.


2019 ◽  
Author(s):  
Jamie A. Greig ◽  
Tu Anh Nguyen ◽  
Michelle Lee ◽  
Alex S. Holehouse ◽  
Ammon E. Posey ◽  
...  

AbstractLow-complexity protein domains promote the formation of various biomolecular condensates. However, in many cases, the precise sequence features governing condensate formation and identity remain unclear. Here, we investigate the role of intrinsically disordered mixed-charge domains (MCDs) in nuclear speckle condensation. Proteins composed exclusively of arginine/aspartic-acid dipeptide repeats undergo length-dependent condensation and speckle incorporation. Substituting arginine with lysine in synthetic and natural speckle-associated MCDs abolishes these activities, identifying a key role for multivalent contacts through arginine’s guanidinium ion. MCDs can synergise with a speckle-associated RNA recognition motif to promote speckle specificity and residence. MCD behaviour is tuneable through net-charge: increasing negative charge abolishes condensation and speckle incorporation. By contrast, increasing positive charge through arginine leads to enhanced condensation, speckle enlargement, decreased splicing factor mobility, and defective mRNA export. Together, these results identify key sequence determinants of MCD-promoted speckle condensation, and link the speckle’s dynamic material properties with function in mRNA processing.


2021 ◽  
Vol 8 ◽  
Author(s):  
George V. Papamokos ◽  
George Tziatzos ◽  
Dimitrios G. Papageorgiou ◽  
Spyros Georgatos ◽  
Efthimios Kaxiras ◽  
...  

Protein phosphorylation is a key regulatory mechanism in eukaryotic cells. In the intrinsically disordered histone tails, phosphorylation is often a part of combinatorial post-translational modifications and an integral part of the “histone code” that regulates gene expression. Here, we study the association between two histone H3 tail peptides modified to different degrees, using fully atomistic molecular dynamics simulations. Assuming that the initial conformations are either α-helical or fully extended, we compare the propensity of the two peptides to associate with one another when both are unmodified, one modified and the other unmodified, or both modified. The simulations lead to the identification of distinct inter- and intramolecular interactions in the peptide dimer, highlighting a prominent role of a fine-tuned phosphorylation rheostat in peptide association. Progressive phosphorylation appears to modulate peptide charge, inducing strong and specific intermolecular interactions between the monomers, which do not result in the formation of amorphous or ordered aggregates, as documented by experimental evidence derived from Circular Dichroism and NMR spectroscopy. However, upon complete saturation of positive charges by phosphate groups, this effect is reversed: intramolecular interactions prevail and dimerization of zero-charge peptides is markedly reduced. These findings underscore the role of phosphorylation thresholds in the dynamics of intrinsically disordered proteins. Phosphorylation rheostats might account for the divergent effects of histone modifications on the modulation of chromatin structure.


2014 ◽  
Vol 50 (74) ◽  
pp. 10797-10800 ◽  
Author(s):  
Ofrah Faust ◽  
Lavi Bigman ◽  
Assaf Friedler

This work describes a new role of intrinsically disordered regions in regulating the oligomeric state and thermodynamic stability of proteins.


2018 ◽  
Vol 430 (11) ◽  
pp. 1621-1639 ◽  
Author(s):  
Florian Malard ◽  
Nadine Assrir ◽  
Mouad Alami ◽  
Samir Messaoudi ◽  
Ewen Lescop ◽  
...  

2020 ◽  
Vol 117 (7) ◽  
pp. 3543-3550 ◽  
Author(s):  
Yan Huang ◽  
Lu Sun ◽  
Leonidas Pierrakeas ◽  
Linchang Dai ◽  
Lu Pan ◽  
...  

The SWR complex edits the histone composition of nucleosomes at promoters to facilitate transcription by replacing the two nucleosomal H2A-H2B (A-B) dimers with H2A.Z-H2B (Z-B) dimers. Swc5, a subunit of SWR, binds to A-B dimers, but its role in the histone replacement reaction was unclear. In this study, we showed that Swc5 uses a tandem DEF/Y motif within an intrinsically disordered region to engage the A-B dimer. A 2.37-Å X-ray crystal structure of the histone binding domain of Swc5 in complex with an A-B dimer showed that consecutive acidic residues and flanking hydrophobic residues of Swc5 form a cap over the histones, excluding histone–DNA interaction. Mutations in Swc5 DEF/Y inhibited the nucleosome editing function of SWR in vitro. Swc5 DEF/Y interacts with histones in vivo, and the extent of this interaction is dependent on the remodeling ATPase of SWR, supporting a model in which Swc5 acts as a wedge to promote A-B dimer eviction. Given that DEF/Y motifs are found in other evolutionary unrelated chromatin regulators, this work provides the molecular basis for a general strategy used repeatedly during eukaryotic evolution to mobilize histones in various genomic functions.


Sign in / Sign up

Export Citation Format

Share Document