post translational modifications
Recently Published Documents


TOTAL DOCUMENTS

3421
(FIVE YEARS 1459)

H-INDEX

110
(FIVE YEARS 16)

2022 ◽  
Author(s):  
Nina Aagaard Poulsen ◽  
◽  
Lotte Bach Larsen

This chapter reviews the genetic factors affecting the composition and quality of cow's milk. It starts by discussing how different breeds of cattle can affect the composition of milk. The chapter then goes on to examine milk proteins, genetic variants and post-translational modifications. It then discusses milk coagulation and other functional properties, before highlighting the genetic influence of fatty acids on minor milk components. The chapter also discusses using mid-infrared spectroscopy for genetic parameter estimation, before concluding with a section on the possibilities for genetic improvement in relation to dairy milk.


2022 ◽  
Vol 12 ◽  
Author(s):  
Guoda Song ◽  
Yucong Zhang ◽  
Hao Li ◽  
Zhuo Liu ◽  
Wen Song ◽  
...  

Background: Ubiquitin and ubiquitin-like (UB/UBL) conjugations are one of the most important post-translational modifications and involve in the occurrence of cancers. However, the biological function and clinical significance of ubiquitin related genes (URGs) in prostate cancer (PCa) are still unclear.Methods: The transcriptome data and clinicopathological data were downloaded from The Cancer Genome Atlas (TCGA), which was served as training cohort. The GSE21034 dataset was used to validate. The two datasets were removed batch effects and normalized using the “sva” R package. Univariate Cox, LASSO Cox, and multivariate Cox regression were performed to identify a URGs prognostic signature. Then Kaplan-Meier curve and receiver operating characteristic (ROC) curve analyses were used to evaluate the performance of the URGs signature. Thereafter, a nomogram was constructed and evaluated.Results: A six-URGs signature was established to predict biochemical recurrence (BCR) of PCa, which included ARIH2, FBXO6, GNB4, HECW2, LZTR1 and RNF185. Kaplan-Meier curve and ROC curve analyses revealed good performance of the prognostic signature in both training cohort and validation cohort. Univariate and multivariate Cox analyses showed the signature was an independent prognostic factor for BCR of PCa in training cohort. Then a nomogram based on the URGs signature and clinicopathological factors was established and showed an accurate prediction for prognosis in PCa.Conclusion: Our study established a URGs prognostic signature and constructed a nomogram to predict the BCR of PCa. This study could help with individualized treatment and identify PCa patients with high BCR risks.


2022 ◽  
Author(s):  
Ksenia G Kuznetsova ◽  
Sofia S Zvonareva ◽  
Rustam Ziganshin ◽  
Elena S Mekhova ◽  
Polina Yu Dgebuadze ◽  
...  

Venoms of predatory marine cone snails (the family Conidae, order Neogastropoda) are intensely studied because of the broad range of biomedical applications of the neuropeptides that they contain, conotoxins. Meanwhile anatomy in some other neogastropod lineages strongly suggests that they have evolved similar venoms independently of cone snails, nevertheless their venom composition remains unstudied. Here we focus on the most diversified of these lineages, the genus Vexillum (the family Costellariidae). We have generated comprehensive multi-specimen, multi-tissue RNA-Seq data sets for three Vexillum species, and supported our findings in two species by proteomic profiling. We show that venoms of Vexillum are dominated by highly diversified short cysteine-rich peptides that in many aspects are very similar to conotoxins. Vexitoxins possess the same precursor organization, display overlapping cysteine frameworks and share several common post-translational modifications with conotoxins. Some vexitoxins show detectable sequence similarity to conotoxins, and are predicted to adopt similar domain conformations, including a pharmacologically relevant inhibitory cysteine-know motif (ICK). The tubular gL of Vexillum is a notably more recent evolutionary novelty than the conoidean venom gland. Thus, we hypothesize lower divergence between the toxin genes, and their somatic counterparts compared to that in conotoxins, and we find support for this hypothesis in the molecular evolution of the vexitoxin cluster V027. We use this example to discuss how future studies on vexitoxins can inform origin and evolution of conotoxins, and how they may help addressing standing questions in venom evolution.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 142
Author(s):  
Junna Hayashi ◽  
John A. Carver

α-Synuclein (αS) is a small, unstructured, presynaptic protein expressed in the brain. Its aggregated form is a major component of Lewy bodies, the large proteinaceous deposits in Parkinson’s disease. The closely related protein, β-Synuclein (βS), is co-expressed with αS. In vitro, βS acts as a molecular chaperone to inhibit αS aggregation. As a result of this assignation, βS has been largely understudied in comparison to αS. However, recent reports suggest that βS promotes neurotoxicity, implying that βS is involved in other cellular pathways with functions independent of αS. Here, we review the current literature pertaining to human βS in order to understand better the role of βS in homeostasis and pathology. Firstly, the structure of βS is discussed. Secondly, the ability of βS to (i) act as a molecular chaperone; (ii) regulate synaptic function, lipid binding, and the nigrostriatal dopaminergic system; (iii) mediate apoptosis; (iv) participate in protein degradation pathways; (v) modulate intracellular metal levels; and (vi) promote cellular toxicity and protein aggregation is explored. Thirdly, the P123H and V70M mutations of βS, which are associated with dementia with Lewy bodies, are discussed. Finally, the importance of post-translational modifications on the structure and function of βS is reviewed. Overall, it is concluded that βS has both synergistic and antagonistic interactions with αS, but it may also possess important cellular functions independent of αS.


2022 ◽  
Author(s):  
Simone Pellegrino ◽  
Kyle C Dent ◽  
Tobias Spikes ◽  
Alan J Warren

The chemical modification of ribosomal RNA and proteins is critical for ribosome assembly, for protein synthesis and may drive ribosome specialization in development and disease. However, the inability to accurately visualize these modifications has limited mechanistic understanding of the role of these modifications in ribosome function. Here we report the 2.15 Å resolution cryo-EM reconstruction of the human 40S ribosomal subunit. We directly visualize post-transcriptional modifications within the 18S rRNA and post-translational modifications at the N-termini of two ribosomal proteins. Additionally, we interpret the solvation shells in the core regions of the 40S ribosomal subunit and reveal how potassium and magnesium ions establish both universally conserved and eukaryote-specific coordination to promote the stabilization and folding of key ribosomal elements. This work provides unprecedented structural details for the human 40S ribosomal subunit that will serve as an important reference for unraveling the functional role of ribosomal RNA modifications.


2022 ◽  
Author(s):  
Evianne Rovers ◽  
Matthieu Schapira

Proximity pharmacology (ProxPharm) is a novel paradigm in drug discovery where a small molecule brings two proteins in close proximity to elicit a signal, generally from one protein onto another. The potential of ProxPharm compounds as a new therapeutic modality is firmly established by proteolysis targeting chimeras (PROTACs) that bring an E3 ubiquitin ligase in proximity to a target protein to induce ubiquitination and subsequent degradation of the target protein. The concept can be expanded to induce other post-translational modifications via the recruitment of different types of protein-modifying enzymes. To survey the human proteome for opportunities in proximity pharmacology, we systematically mapped non-catalytic drug binding pockets on the structure of protein-modifying enzymes available from the Protein Databank. In addition to binding sites exploited by previously reported ProxPharm compounds, we identified putative ligandable non-catalytic pockets in 188 kinases, 42 phosphatases, 26 deubiquitinases, 9 methyltransferases, 7 acetyltransferases, 7 glycosyltransferases, 4 deacetylases, 3 demethylases and 2 glycosidases, including cavities occupied by chemical matter that may serve as starting points for future ProxPharm compounds. This systematic survey confirms that proximity pharmacology is a versatile modality with largely unexplored and promising potential, and reveals novel opportunities to pharmacologically rewire molecular circuitries.


2022 ◽  
Vol 12 ◽  
Author(s):  
Carolina Manosalva ◽  
John Quiroga ◽  
Alejandra I. Hidalgo ◽  
Pablo Alarcón ◽  
Nicolás Anseoleaga ◽  
...  

During an inflammatory process, shift in the cellular metabolism associated with an increase in extracellular acidification are well-known features. This pH drop in the inflamed tissue is largely attributed to the presence of lactate by an increase in glycolysis. In recent years, evidence has accumulated describing the role of lactate in inflammatory processes; however, there are differences as to whether lactate can currently be considered a pro- or anti-inflammatory mediator. Herein, we review these recent advances on the pleiotropic effects of lactate on the inflammatory process. Taken together, the evidence suggests that lactate could exert differential effects depending on the metabolic status, cell type in which the effects of lactate are studied, and the pathological process analyzed. Additionally, various targets, including post-translational modifications, G-protein coupled receptor and transcription factor activation such as NF-κB and HIF-1, allow lactate to modulate signaling pathways that control the expression of cytokines, chemokines, adhesion molecules, and several enzymes associated with immune response and metabolism. Altogether, this would explain its varied effects on inflammatory processes beyond its well-known role as a waste product of metabolism.


2022 ◽  
Author(s):  
Fred Lee ◽  
Xinhao Shao ◽  
Yu Gao ◽  
Alexandra Naba

The extracellular matrix (ECM) is a complex and dynamic meshwork of proteins providing structural support to cells. It also provides biochemical signals governing cellular processes including proliferation and migration. Alterations of ECM structure and/or composition has been shown to lead to, or accompany, many pathological processes including cancer and fibrosis. To understand how the ECM contributes to diseases, we first need to obtain a comprehensive characterization of the ECM of tissues and of its changes during disease progression. Over the past decade, mass-spectrometry-based proteomics has become the state-of-the-art method to profile the protein composition of ECMs. However, existing methods do not fully capture the broad dynamic range of protein abundance in the ECM, nor do they permit to achieve the high coverage needed to gain finer biochemical information, including the presence of isoforms or post-translational modifications. In addition, broadly adopted proteomic methods relying on extended trypsin digestion do not provide structural information on ECM proteins, yet, gaining insights into ECM protein structure is critical to better understanding protein functions. Here, we present the optimization of a time-lapsed proteomic method using limited proteolysis of partially denatured samples and the sequential release of peptides to achieve superior sequence coverage as compared to standard ECM proteomic workflow. Exploiting the spatio-temporal resolution of this method, we further demonstrate how 3-dimensional time-lapsed peptide mapping can identify protein regions differentially susceptible to trypsin and can thus identify sites of post-translational modifications, including protein-protein interactions. We further illustrate how this approach can be leveraged to gain insight on the role of the novel ECM protein SNED1 in ECM homeostasis. We found that the expression of SNED1 expression by mouse embryonic fibroblasts results in the alteration of overall ECM composition and the sequence coverage of certain ECM proteins, raising the possibility that SNED1 could modify accessibility to trypsin by engaging in protein-protein interactions.


Author(s):  
Benjamin J. Lethbridge ◽  
Robert E. Asenstorfer ◽  
Laura S. Bailey ◽  
Brenda T. Breil ◽  
Jodie V. Johnson ◽  
...  

AbstractTrifolitoxin (TFX, C41H63N15O15S) is a selective, ribosomally-synthesized, post-translationally modified, peptide antibiotic, produced by Rhizobium leguminosarum bv. trifolii T24. TFX specifically inhibits α-proteobacteria, including the plant symbiont Rhizobium spp., the plant pathogen Agrobacterium spp. and the animal pathogen Brucella abortus. TFX-producing strains prevent legume root nodulation by TFX-sensitive rhizobia. TFX has been isolated as a pair of geometric isomers, TFX1 and TFX2, which are derived from the biologically inactive primary amino acid sequence: Asp-Ile-Gly-Gly-Ser-Arg-Gln-Gly-Cys-Val-Ala. Gly-Cys is present as a thiazoline ring and the Arg-Gln-Gly sequence is extensively modified to a UV absorbing, blue fluorescent chromophore. The chromophore consists of a conjugated, 5-membered heterocyclic ring and side chain of modified glutamine.


2022 ◽  
Vol 5 (4) ◽  
pp. e202101078
Author(s):  
Tunahan Ergünay ◽  
Özgecan Ayhan ◽  
Arda B Celen ◽  
Panagiota Georgiadou ◽  
Emre Pekbilir ◽  
...  

CRISPR/Cas9 is a popular genome editing technology. Although widely used, little is known about how this prokaryotic system behaves in humans. An unwanted consequence of eukaryotic Cas9 expression is off-target DNA binding leading to mutagenesis. Safer clinical implementation of CRISPR/Cas9 necessitates a finer understanding of the regulatory mechanisms governing Cas9 behavior in humans. Here, we report our discovery of Cas9 sumoylation and ubiquitylation, the first post-translational modifications to be described on this enzyme. We found that the major SUMO2/3 conjugation site on Cas9 is K848, a key positively charged residue in the HNH nuclease domain that is known to interact with target DNA and contribute to off-target DNA binding. Our results suggest that Cas9 ubiquitylation leads to decreased stability via proteasomal degradation. Preventing Cas9 sumoylation through conversion of K848 into arginine or pharmacologic inhibition of cellular sumoylation enhances the enzyme’s turnover and diminishes guide RNA-directed DNA binding efficacy, suggesting that sumoylation at this site regulates Cas9 stability and DNA binding. More research is needed to fully understand the implications of these modifications for Cas9 specificity.


Sign in / Sign up

Export Citation Format

Share Document