oligomeric state
Recently Published Documents


TOTAL DOCUMENTS

503
(FIVE YEARS 146)

H-INDEX

48
(FIVE YEARS 7)

2022 ◽  
Vol 29 ◽  
pp. 101198
Author(s):  
Dustin Smith ◽  
Laura Lloyd ◽  
Elaine Wei ◽  
Paria Radmanesh ◽  
Chin-Chuan Wei

2022 ◽  
Author(s):  
Natsumi Maruta ◽  
Hayden Burdett ◽  
Bryan Y. J. Lim ◽  
Xiahao Hu ◽  
Sneha Desa ◽  
...  

AbstractAnimals and plants have NLRs (nucleotide-binding leucine-rich repeat receptors) that recognize the presence of pathogens and initiate innate immune responses. In plants, there are three types of NLRs distinguished by their N-terminal domain: the CC (coiled-coil) domain NLRs, the TIR (Toll/interleukin-1 receptor) domain NLRs and the RPW8 (resistance to powdery mildew 8)-like coiled-coil domain NLRs. CC-NLRs (CNLs) and TIR-NLRs (TNLs) generally act as sensors of effectors secreted by pathogens, while RPW8-NLRs (RNLs) signal downstream of many sensor NLRs and are called helper NLRs. Recent studies have revealed three dimensional structures of a CNL (ZAR1) including its inactive, intermediate and active oligomeric state, as well as TNLs (RPP1 and ROQ1) in their active oligomeric states. Furthermore, accumulating evidence suggests that members of the family of lipase-like EDS1 (enhanced disease susceptibility 1) proteins, which are uniquely found in seed plants, play a key role in providing a link between sensor NLRs and helper NLRs during innate immune responses. Here, we summarize the implications of the plant NLR structures that provide insights into distinct mechanisms of action by the different sensor NLRs and discuss plant NLR-mediated innate immune signalling pathways involving the EDS1 family proteins and RNLs.


2021 ◽  
Author(s):  
Amine Driouchi ◽  
Scott Gray-Owen ◽  
Christopher M Yip

Mapping the self-organization and spatial distribution of membrane proteins is key to understanding their function. We report here on a correlated STORM/homoFRET imaging approach for resolving the nanoscale distribution and oligomeric state of membrane proteins. Live cell homoFRET imaging of CEACAM1, a cell-surface receptor known to exist in a complex equilibrium between monomer and dimer/oligomer states, revealed highly heterogenous diffraction-limited structures on the surface of HeLa cells. Correlated super-resolved STORM imaging revealed that these structures comprised a complex mixture and spatial distribution of self-associated CEACAM1 molecules. This correlated approach provides a compelling strategy for addressing challenging questions about the interplay between membrane protein concentration, distribution, interaction, clustering, and function.


2021 ◽  
Author(s):  
Varena Siebert ◽  
Mara Silber ◽  
Elena Heuten ◽  
Claudia Muhle-Goll ◽  
Marius K. Lemberg

The intramembrane protease PARL is a crucial mitochondrial safeguard by cleaving the mitophagy regulators PINK1 and PGAM5. PGAM5 substrate determinates have not been rigorously investigated and it is unclear how uncoupling the mitochondrial membrane potential regulates its processing inversely to PINK1. Here we show that in PGAM5 several hydrophilic residues distant from the cleavage site serve as key determinant for PARL-catalyzed cleavage. NMR analysis indicates that a short N-terminal amphipathic helix, followed by a kink and a C-terminal helix harboring the scissile peptide bond, is key for a productive interaction with PARL. In difference to PINK1, PGAM5 is stably inserted into the inner mitochondrial membrane until uncoupling the membrane potential triggers its disassembly into monomers that are vulnerable to PARL-catalyzed processing. We suggest a model in which PGAM5 is a slowly processed substrate with PARL-catalyzed cleavage that is influenced by multiple hierarchical substrate features including a membrane-potential-dependent oligomeric switch.


2021 ◽  
Author(s):  
Silvia Gomez-Puerta ◽  
Roberto Ferrero ◽  
Tobias Hochstoeger ◽  
Ivan Zubiri ◽  
Jeffrey A. Chao ◽  
...  

Endoplasmic reticulum (ER) to nucleus homeostatic signalling, known as the unfolded protein response (UPR), relies on the non-canonical splicing of XBP1 mRNA. The molecular switch that initiates splicing is the oligomerization of the ER stress sensor and UPR endonuclease IRE1a. While IRE1a can form large clusters that have been proposed to function as XBP1 processing centers on the ER, the actual oligomeric state of active IRE1a complexes as well as the targeting mechanism that recruits XBP1 to IRE1a oligomers, remain unknown. Here, we used a single molecule imaging approach to directly monitor the recruitment of individual XBP1 transcripts to the ER surface. We confirmed that stable ER association of unspliced XBP1 mRNA is established through HR2-dependent targeting and relies on active translation. In addition, we show that IRE1a-catalyzed splicing mobilizes XBP1 mRNA from the ER membrane in response to ER stress. Surprisingly, we find that XBP1 transcripts are not recruited into large IRE1a clusters, which only assemble upon overexpression of fluorescently-tagged IRE1a during ER stress. Our findings support a model where ribosome-engaged, ER-poised XBP1 mRNA is processed by functional IRE1a assemblies that are homogenously distributed throughout the ER membrane.


2021 ◽  
Vol 1 ◽  
Author(s):  
Angel Mancebo ◽  
Dushyant Mehra ◽  
Chiranjib Banerjee ◽  
Do-Hyung Kim ◽  
Elias M. Puchner

Single molecule localization microscopy has become a prominent technique to quantitatively study biological processes below the optical diffraction limit. By fitting the intensity profile of single sparsely activated fluorophores, which are often attached to a specific biomolecule within a cell, the locations of all imaged fluorophores are obtained with ∼20 nm resolution in the form of a coordinate table. While rendered super-resolution images reveal structural features of intracellular structures below the optical diffraction limit, the ability to further analyze the molecular coordinates presents opportunities to gain additional quantitative insights into the spatial distribution of a biomolecule of interest. For instance, pair-correlation or radial distribution functions are employed as a measure of clustering, and cross-correlation analysis reveals the colocalization of two biomolecules in two-color SMLM data. Here, we present an efficient filtering method for SMLM data sets based on pair- or cross-correlation to isolate localizations that are clustered or appear in proximity to a second set of localizations in two-color SMLM data. In this way, clustered or colocalized localizations can be separately rendered and analyzed to compare other molecular properties to the remaining localizations, such as their oligomeric state or mobility in live cell experiments. Current matrix-based cross-correlation analyses of large data sets quickly reach the limitations of computer memory due to the space complexity of constructing the distance matrices. Our approach leverages k-dimensional trees to efficiently perform range searches, which dramatically reduces memory needs and the time for the analysis. We demonstrate the versatile applications of this method with simulated data sets as well as examples of two-color SMLM data. The provided MATLAB code and its description can be integrated into existing localization analysis packages and provides a useful resource to analyze SMLM data with new detail.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1503
Author(s):  
Megan D. Joseph ◽  
Elena Tomas Tomas Bort ◽  
Richard P. Grose ◽  
Peter J. McCormick ◽  
Sabrina Simoncelli

G-protein coupled receptors (GPCRs) are known to form homo- and hetero- oligomers which are considered critical to modulate their function. However, studying the existence and functional implication of these complexes is not straightforward as controversial results are obtained depending on the method of analysis employed. Here, we use a quantitative single molecule super-resolution imaging technique named qPAINT to quantify complex formation within an example GPCR. qPAINT, based upon DNA-PAINT, takes advantage of the binding kinetics between fluorescently labelled DNA imager strands to complementary DNA docking strands coupled to protein targeting antibodies to quantify the protein copy number in nanoscale dimensions. We demonstrate qPAINT analysis via a novel pipeline to study the oligomerization of the purinergic receptor Y2 (P2Y2), a rhodopsin-like GPCR, highly expressed in the pancreatic cancer cell line AsPC-1, under control, agonistic and antagonistic conditions. Results reveal that whilst the density of P2Y2 receptors remained unchanged, antagonistic conditions displayed reduced percentage of oligomers, and smaller numbers of receptors in complexes. Yet, the oligomeric state of the receptors was not affected by agonist treatment, in line with previous reports. Understanding P2Y2 oligomerization under agonistic and antagonistic conditions will contribute to unravelling P2Y2 mechanistic action and therapeutic targeting.


2021 ◽  
Author(s):  
Michael Jendrusch ◽  
Jan O. Korbel ◽  
S. Kashif Sadiq

De novo protein design is a longstanding fundamental goal of synthetic biology, but has been hindered by the difficulty in reliable prediction of accurate high-resolution protein structures from sequence. Recent advances in the accuracy of protein structure prediction methods, such as AlphaFold (AF), have facilitated proteome scale structural predictions of monomeric proteins. Here we develop AlphaDesign, a computational framework for de novo protein design that embeds AF as an oracle within an optimisable design process. Our framework enables rapid prediction of completely novel protein monomers starting from random sequences. These are shown to adopt a diverse array of folds within the known protein space. A recent and unexpected utility of AF to predict the structure of protein complexes, further allows our framework to design higher-order complexes. Subsequently a range of predictions are made for monomers, homodimers, heterodimers as well as higher-order homo-oligomers -trimers to hexamers. Our analyses also show potential for designing proteins that bind to a pre-specified target protein. Structural integrity of predicted structures is validated and confirmed by standard ab initio folding and structural analysis methods as well as more extensively by performing rigorous all-atom molecular dynamics simulations and analysing the corresponding structural flexibility, intramonomer and interfacial amino-acid contacts. These analyses demonstrate widespread maintenance of structural integrity and suggests that our framework allows for fairly accurate protein design. Strikingly, our approach also reveals the capacity of AF to predict proteins that switch conformation upon complex formation, such as involving switches from α-helices to β-sheets during amyloid filament formation. Correspondingly, when integrated into our design framework, our approach reveals de novo design of a subset of proteins that switch conformation between monomeric and oligomeric state.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6080
Author(s):  
Stephen E. Harding

Analytical ultracentrifugation is a versatile approach for analysing the molecular mass, molecular integrity (degradation/aggregation), oligomeric state and association/dissociation constants for self-association, and assay of ligand binding of kinase related membrane proteins and glycans. It has the great property of being matrix free—providing separation and analysis of macromolecular species without the need of a separation matrix or membrane or immobilisation onto a surface. This short review—designed for the non-hydrodynamic expert—examines the potential of modern sedimentation velocity and sedimentation equilibrium and the challenges posed for these molecules particularly those which have significant cytoplasmic or extracellular domains in addition to the transmembrane region. These different regions can generate different optimal requirements in terms of choice of the appropriate solvent (aqueous/detergent). We compare how analytical ultracentrifugation has contributed to our understanding of two kinase related cellular or bacterial protein/glycan systems (i) the membrane erythrocyte band 3 protein system—studied in aqueous and detergent based solvent systems—and (ii) what it has contributed so far to our understanding of the enterococcal VanS, the glycan ligand vancomycin and interactions of vancomycin with mucins from the gastrointestinal tract.


2021 ◽  
Author(s):  
Eva Estebanez-Perpiña ◽  
Alba Jimenez-Panizo ◽  
Andrea Alegre-Marti ◽  
Gregory Fettweis ◽  
Montserrat Abella ◽  
...  

The glucocorticoid receptor (GR) is a ubiquitously expressed transcription factor that controls metabolic and homeostatic processes essential for life. Although numerous crystal structures of the GR ligand-binding domain (GR-LBD) have been reported, the functional oligomeric state of the full-length receptor, which is essential for its transcriptional activity, remains disputed. Here we present five new crystal structures of agonist-bound GR-LBD, along with a thorough analysis of previous structural work. Biologically relevant homodimers were identified by studying a battery of GR point mutants including crosslinking assays in solution and quantitative fluorescence microscopy in living cells. Our results highlight the relevance of non-canonical dimerization modes for GR, especially of contacts made by loop L1-3 residues such as Tyr545. Our work unveils likely pathophysiologically relevant quaternary assemblies of the nuclear receptor with important implications for glucocorticoid action and drug design.


Sign in / Sign up

Export Citation Format

Share Document