rna recognition
Recently Published Documents


TOTAL DOCUMENTS

779
(FIVE YEARS 132)

H-INDEX

78
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Xuan Ye ◽  
Wen Yang ◽  
Soon Yi ◽  
Yanan Zhao ◽  
Fan Yang ◽  
...  

The specificity of RNA-binding proteins for their target sequences varies considerably. Yet, it is not understood how certain proteins achieve markedly higher sequence specificity than most others. Here we show that the RNA Recognition Motif of RbFox accomplishes extraordinary sequence specificity by employing functionally and structurally distinct binding modes. Affinity measurements of RbFox for all binding site variants reveal the existence of two different binding modes. The first exclusively binds the cognate and a closely related RNA variant with high affinity. The second mode accommodates all other RNAs with greatly reduced affinity, thereby imposing large thermodynamic penalties on even near-cognate sequences. NMR studies indicate marked structural differences between the two binding modes, including large conformational rearrangements distant from the RNA binding site. Distinct binding modes by a single RNA binding module explain extraordinary sequence selectivity and reveal an unknown layer of functional diversity, cross talk and regulation for RNA-protein interactions.


2021 ◽  
Author(s):  
Ekaterina Semenova ◽  
Ishita Jain ◽  
Matvey Kolesnik ◽  
Leonid Minakhin ◽  
Natalia Morozova ◽  
...  

Abstract Type VI CRISPR-Cas systems are the only CRISPR variety that cleaves exclusively RNA1,2. In addition to the CRISPR RNA (crRNA)-guided, sequence-specific binding and cleavage of target RNAs, such as phage transcripts, the type VI effector, Cas13, causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from phage spread3,4. We show here that the principal form of collateral RNA degradation elicited by Cas13a protein from Leptotrichia shahii upon target RNA recognition is the cleavage of anticodons of multiple tRNA species, primarily those with anticodons containing uridines. This tRNA cleavage is necessary and sufficient for bacterial dormancy induction by Cas13a. In addition, Cas13a activates the RNases of bacterial toxin-antitoxin modules, thus indirectly causing mRNA and rRNA cleavage, which could provide a back-up defense mechanism. The identified mode of action of Cas13a resembles that of bacterial anticodon nucleases involved in antiphage defense5, which is compatible with the hypothesis that type VI effectors evolved from an abortive infection module6,7 encompassing an anticodon nuclease.


Author(s):  
Jinan Wang ◽  
Lan Lan ◽  
Xiaoqing Wu ◽  
Liang Xu ◽  
Yinglong Miao

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chris H. Hill ◽  
Lukas Pekarek ◽  
Sawsan Napthine ◽  
Anuja Kibe ◽  
Andrew E. Firth ◽  
...  

AbstractProgrammed –1 ribosomal frameshifting (PRF) in cardioviruses is activated by the 2A protein, a multi-functional virulence factor that also inhibits cap-dependent translational initiation. Here we present the X-ray crystal structure of 2A and show that it selectively binds to a pseudoknot-like conformation of the PRF stimulatory RNA element in the viral genome. Using optical tweezers, we demonstrate that 2A stabilises this RNA element, likely explaining the increase in PRF efficiency in the presence of 2A. Next, we demonstrate a strong interaction between 2A and the small ribosomal subunit and present a cryo-EM structure of 2A bound to initiated 70S ribosomes. Multiple copies of 2A bind to the 16S rRNA where they may compete for binding with initiation and elongation factors. Together, these results define the structural basis for RNA recognition by 2A, show how 2A-mediated stabilisation of an RNA pseudoknot promotes PRF, and reveal how 2A accumulation may shut down translation during virus infection.


2021 ◽  
Author(s):  
Xiaoju Li ◽  
Qianqian Yu ◽  
Xinyan Guo ◽  
Chenlin Liu ◽  
Runze Zhao ◽  
...  

Abstract Background Sorafenib is one of the few effective first-line drugs approved for the treatment of advanced hepatocellular carcinoma (HCC). However, the development of drug resistance is common among individuals with HCC. Thus, there is an urgent need to solve this problem. Results Recent evidence indicated that the anticancer activity of sorafenib mainly relies on the induction of ferroptosis. In our study, genes that suppress ferroptosis, especially GPX4 and DHODH, were enriched in sorafenib-resistant cells and primary tissues and were associated with poor prognosis of HCC patients who received sorafenib treatment. Therefore, silencing GPX4 and DHODH might be a novel and effective strategy to overcome sorafenib resistance. Here, a novel ferroptosis inducer comprising a multiplex small interfering RNA (multi-siRNA) capable of simultaneously silencing GPX4 and DHODH was created. Then, exosomes with high multi-siRNA loading and HCC-specific targeting were established by fusing the SP94 peptide and the N-terminal RNA recognition motif (RRM) of U1-A with the exosomal membrane protein Lamp2b. The results from the in vitro and in vivo experiments indicate that this tumor-targeting nanodelivery system (ExoSP94−lamp2b−RRM-multi-siRNA) could enhance sorafenib-induced ferroptosis and overcome sorafenib resistance, which might open a new avenue for clinically overcoming sorafenib resistance. Conclusions We designed HCC-targeted exosomes (ExoSP94−Lamp2b−RRM) that can deliver a novel ferroptosis inducer. Our data show that ExoSP94−lamp2b−RRM-multi-siRNA could enhance sorafenib-induced ferroptosis by silencing GPX4 and DHODH expression and consequently increase HCC sensitivity to sorafenib. This is the first study to describe the use of engineered exosomes to overcome acquired sorafenib resistance with respect to ferroptosis.


FEBS Journal ◽  
2021 ◽  
Author(s):  
Sayantani Roy ◽  
Soumendu Boral ◽  
Snigdha Maiti ◽  
Tushar Kushwaha ◽  
Aditya J. Basak ◽  
...  

2021 ◽  
Author(s):  
Ishita Jain ◽  
Matvey Kolesnik ◽  
Leonid Minakhin ◽  
Natalia Morozova ◽  
Anna Shiriaeva ◽  
...  

Type VI CRISPR-Cas systems are the only CRISPR variety that cleaves exclusively RNA. In addition to the CRISPR RNA (crRNA)-guided, sequence-specific binding and cleavage of target RNAs, such as phage transcripts, the type VI effector, Cas13, causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from phage spread. We show here that the principal form of collateral RNA degradation elicited by Cas13a protein from Leptotrichia shahii upon target RNA recognition is the cleavage of anticodons of multiple tRNA species, primarily those with anticodons containing uridines. This tRNA cleavage is necessary and sufficient for bacterial dormancy induction by Cas13a. In addition, Cas13a activates the RNases of bacterial toxin-antitoxin modules, thus indirectly causing mRNA and rRNA cleavage, which could provide a back-up defense mechanism. The identified mode of action of Cas13a resembles that of bacterial anticodon nucleases involved in antiphage defense, which is compatible with the hypothesis that type VI effectors evolved from an abortive infection module encompassing an anticodon nuclease.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Saikat Bhattacharya ◽  
Suman Wang ◽  
Divya Reddy ◽  
Siyuan Shen ◽  
Ying Zhang ◽  
...  

AbstractThe RNA recognition motif (RRM) binds to nucleic acids as well as proteins. More than one such domain is found in the pre-mRNA processing hnRNP proteins. While the mode of RNA recognition by RRMs is known, the molecular basis of their protein interaction remains obscure. Here we describe the mode of interaction between hnRNP L and LL with the methyltransferase SETD2. We demonstrate that for the interaction to occur, a leucine pair within a highly conserved stretch of SETD2 insert their side chains in hydrophobic pockets formed by hnRNP L RRM2. Notably, the structure also highlights that RRM2 can form a ternary complex with SETD2 and RNA. Remarkably, mutating the leucine pair in SETD2 also results in its reduced interaction with other hnRNPs. Importantly, the similarity that the mode of SETD2-hnRNP L interaction shares with other related protein-protein interactions reveals a conserved design by which splicing regulators interact with one another.


2021 ◽  
Vol 11 ◽  
Author(s):  
Meijian Liao ◽  
Xiaolin Sun ◽  
Shoucui Gao ◽  
Yaou Zhang

Polycomb repressive complex 2 (PRC2) is a multi-subunit protein complex mediating the methylation of lysine 27 on histone H3 and playing an important role in transcriptional repression during tumorigenesis and development. Previous studies revealed that both protein-coding and non-coding RNAs could bind to PRC2 complex. However, the functions of protein-coding RNAs that bind to PRC2 complex in tumor are still unknown. Through data mining and RNA immunoprecipitation (RIP) assay, our study found that there were a class of protein-coding RNAs bound to PRC2 complex and H3 with tri-methylation on lysine 27. The Bayesian gene regulatory network analysis pointed out that these RNAs regulated the expression of PRC2-regulated genes in cancer. In addition, gene set enrichment analysis (GSEA), gene ontology (GO) analysis, and weighted gene co-expression network analysis (WGCNA) also confirmed that these RNAs were associated with histone modification in cancer. We also confirmed that MYO1C, a PRC2-bound transcript, inhibited the modification level of H3K27me3. Further detailed study showed that TMEM117 regulated TSLP expression through EZH2-mediated H3K27me3 modification. Interestingly, the RNA recognition motif of PRC2 complex might help these RNAs bind to the PRC2 complex more easily. The same regulatory pattern was found in mice as well.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhigang Li ◽  
Qingyu Guo ◽  
Jiaxin Zhang ◽  
Zitong Fu ◽  
Yifei Wang ◽  
...  

The RNA-binding motif (RBM) proteins are a class of RNA-binding proteins named, containing RNA-recognition motifs (RRMs), RNA-binding domains, and ribonucleoprotein motifs. RBM proteins are involved in RNA metabolism, including splicing, transport, translation, and stability. Many studies have found that aberrant expression and dysregulated function of RBM proteins family members are closely related to the occurrence and development of cancers. This review summarizes the role of RBM proteins family genes in cancers, including their roles in cancer occurrence and cell proliferation, migration, and apoptosis. It is essential to understand the mechanisms of these proteins in tumorigenesis and development, and to identify new therapeutic targets and prognostic markers.


Sign in / Sign up

Export Citation Format

Share Document