Linear and Non-Linear Stability Analysis in Boiling Water Reactors

2019 ◽  
2020 ◽  
Vol 135 ◽  
pp. 106983
Author(s):  
Omar Alejandro Olvera-Guerrero ◽  
Alfonso Prieto-Guerrero ◽  
Gilberto Espinosa-Paredes

The combined effect of various parameters of gravity modulation on the onset of ferroconvection is studied for both linear and non-linear stability. The effect of various parameters of ferroconvection is studied for linear stability analysis. The resulting seven-mode generalized Lorenz model obtained in non-linear stability analysis is solved using Runge -Kutta-Felberg 45 method to analyze the heat transfer. Consequently the individual effect of gravity modulation on heat transport has been investigated. Further, the effect of physical parameters on heat transport has been analyzed and depicted graphically. The low-frequency gravity modulation is observed to get an effective influence on the stability of the system. Therefore ferro convection can be advanced or delayed by controlling different governing parameters. It shows that the influence of gravity modulation stabilizes system.


Author(s):  
F. Wehle ◽  
A. Schmidt ◽  
S. Opel ◽  
R. Velten

Power oscillations associated with density waves in boiling water reactors (BWRs) have been studied widely. Industrial research in this area is active since the invention of the first BWR. Stability measurements have been performed in various plants already during commissioning phase but especially the magnitude and divergent nature of the oscillations during the LaSalle Unit 2 nuclear power plant event on March 9, 1988, renewed concern about the state of knowledge oN BWR instabilities. The appropriate representation of the physical processes in the non-linear regime requires typically time domain stability analysis. The objective of this paper is to present a physical model, applicable for stability analysis in the non-linear regime, which extends to high amplitude oscillations where inlet reverse flow occurs. The application of this model gives a deeper insight into the physical reasons for the prevention of the uncontrolled divergence of BWR oscillations. The mechanisms that have a stabilizing effect are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document