heat transport
Recently Published Documents


TOTAL DOCUMENTS

4098
(FIVE YEARS 777)

H-INDEX

101
(FIVE YEARS 14)

2022 ◽  
Author(s):  
Jesus Alberto Casillas-Trasvina ◽  
Bart Rogiers ◽  
Koen Beerten ◽  
Laurent Wouters ◽  
Kristine Walraevens

Abstract. Heat is a naturally occurring widespread groundwater tracer that can be used to identify flow patterns in groundwater systems. Temperature measurements, being relatively inexpensive and effortless to gather, represent a valuable source of information which can be exploited to reduce uncertainties on groundwater flow, and e.g. support performance assessment studies on waste disposal sites. In a lowland setting, however, hydraulic gradients are typically small, and whether temperature measurements can be used to inform us about catchment-scale groundwater flow remains an open question. For the Neogene aquifer in Flanders, groundwater flow and solute transport models have been developed in the framework of safety and feasibility studies for the underlying Boom Clay Formation as potential host rock for geological disposal of radioactive waste. However, the simulated fluxes by these models are still subject to large uncertainties, as they are typically constrained by hydraulic heads only. In the current study we use a state-of-the-art 3D steady-state groundwater flow model, calibrated against hydraulic head measurements, to build a 3D transient heat-transport model, for assessing the use of heat as an additional state variable, in a lowland setting, at the catchment scale. We therefore use temperature-depth (TD) profiles as additional state variable observations for inverse conditioning. Furthermore, a Holocene paleo-temperature time curve was constructed based on paleo-temperature reconstructions in Europe from several sources in combination with land-surface temperature (LST) imagery remote sensing monthly data from 2001 to 2019 (retrieved from NASA’s MODIS). The aim of the research is to understand the mechanisms of heat transport and to characterize the temperature distribution and dynamics in the Neogene aquifer. The simulation results clearly underline advection/convection and conduction as the major heat transport mechanisms, with a reduced role of advection/convection in zones where flux magnitudes are low, which suggests temperature is a useful indicator also in a lowland setting. Furthermore, performed scenarios highlight the important roles of i) surface hydrological features and withdrawals driving local groundwater flow systems, and ii) the inclusion of subsurface features like faults in the conceptualization and development of hydrogeological investigations. These findings serve as a proxy of the influence of advective transport and barrier/conduit role of faults, particularly the Rauw Fault in this case, and suggest that solutes released from the Boom Clay might be affected in similar ways.


Author(s):  
Muhammad Yasir ◽  
Awais Ahmed ◽  
Masood Khan ◽  
Zahoor Iqbal ◽  
Muhammad Azam

The most important and significant research topic in mechanical and industrial engineering is the fluid flow with heat transport by a stretched surface because of the numerous applications. The impact of heat transport on product quality can be noticed in the field of chemical engineering, polymer processing, glass fiber production, hot rolling, metal extrusion, production of paper, and drawing of plastic films and wires. In light of such foregoing applications, an attempt is made to model the thermal and solutal diffusion phenomena in Oldroyd-B nanofluid flow over a stretching cylinder by using Buongiorno's model and Cattaneo-Cristov theory. To explore the heat flow mechanism in the flow, the effects of heat source/sink with ohmic heating are also considered. Additionally, the influence of chemical reactions is used to investigate the solutal transport process in nanofluid flow. The mathematical formulation section of the manuscript depicts the mathematical modeling of momentum, heat, and mass diffusion equations. The effect of dimensionless physical constraints on the flow, temperature, and concentration distributions of Oldroyd-B nanofluid flow are investigated using the homotopy analysis method (HAM) in Wolfram Mathematica. In the results and discussion section, graphical findings are displayed and physically justified. A section of concluding remarks is added at the end of the text to emphasize the study's major findings.


2022 ◽  
Author(s):  
Maria Vittoria Guarino ◽  
Louise Sime ◽  
David Schroeder ◽  
Jeff Ridley

Abstract. The Heinrich 11 event is simulated using the HadGEM3 model during the Last Interglacial period. We apply 0.2 Sv of meltwater forcing across the North Atlantic during a 250 years long simulation. We find that the strength of the Atlantic Meridional Overturning Circulation is reduced by 60 % after 150 years of meltwater forcing, with an associated decrease of 0.2 to 0.4 PW in meridional ocean heat transport at all latitudes. The changes in ocean heat transport affect surface temperatures. The largest increase in the meridional surface temperature gradient occurs between 40–50 N. This increase is associated with a strengthening of 20 % in 850 hPa winds. The stream jet intensification in the Northern Hemisphere in return alters the temperature structure of the ocean heat through an increased gyre circulation, and associated heat transport (+0.1–0.2 PW), at the mid-latitudes, and a decreased gyre ocean heat transport (−0.2 PW) at high-latitudes. The changes in meridional temperature and pressure gradients cause the Intertropical Convergence Zone (ITCZ) to move southward, leading to stronger westerlies and a more positive Southern Annual Mode (SAM) in the Southern Hemisphere. The positive SAM influences sea ice formation leading to an increase in Antarctic sea ice. Our coupled-model simulation framework shows that the classical "thermal bipolar see-saw'' has previously undiscovered consequences in both Hemispheres: these include Northern Hemisphere gyre heat transport and wind changes; alongside an increase in Antarctic sea ice during the first 250 years of meltwater forcing.


2022 ◽  
Vol 934 ◽  
Author(s):  
N.G. Hadjiconstantinou ◽  
M.M. Swisher

The thermal resistance associated with the interface between a solid and a liquid is analysed from an atomistic point of view. Partial evaluation of the associated Green–Kubo integral elucidates the various factors governing heat transport across the interface and leads to a quantitative model for the thermal resistance in terms of atomistic-level system parameters. The model is validated using molecular dynamics simulations.


2022 ◽  
Author(s):  
Jake Aylmer ◽  
David Ferreira ◽  
Daniel Feltham

AbstractUnderstanding drivers of Arctic and Antarctic sea ice on multidecadal timescales is key to reducing uncertainties in long-term climate projections. Here we investigate the impact of ocean heat transport (OHT) on sea ice, using pre-industrial control simulations of 20 models participating in the latest Coupled Model Intercomparison Project (CMIP6). In all models and in both hemispheres, sea ice extent is negatively correlated with poleward OHT. However, the similarity of the correlations in both hemispheres hides radically different underlying mechanisms. In the northern hemisphere, positive OHT anomalies primarily result in increased ocean heat convergence along the Atlantic sea ice edge, where most of the ice loss occurs. Such strong, localised heat fluxes ($$\sim {}100~\text {W}~\text {m}^{-2}$$ ∼ 100 W m - 2 ) also drive increased atmospheric moist-static energy convergence at higher latitudes, resulting in a pan-Arctic reduction in sea ice thickness. In the southern hemisphere, increased OHT is released relatively uniformly under the Antarctic ice pack, so that associated sea ice loss is driven by basal melt with no direct atmospheric role. These results are qualitatively robust across models and strengthen the case for a substantial contribution of ocean forcing to sea ice uncertainty, and biases relative to observations, in climate models.


2022 ◽  
Vol 8 (1) ◽  
pp. 1-12
Author(s):  
Iftikhar Ahmad ◽  
Muhammad Faisal ◽  
Qazi Zan-Ul-Abadin ◽  
Tariq Javed ◽  
K. Loganathan

Author(s):  
Nilankush Acharya ◽  
Suprakash Maity ◽  
Prabir K Kundu

Entropy generation investigation of hybrid nanofluidic transport over an unsteady spinning disk is reported in this analysis. The magnetic influence, velocity slips, and thermal radiative effects are included within the flow. Ferrous oxide (Fe3O4) and graphene oxide (GO) are used as tiny nano ingredients, and water (H2O) is the base medium. The dimensional leading equations are settled to dimensionless nonlinear ordinary differential equations (ODEs) by significant similarity transformations. Then, classical RK-4 scheme with a shooting process has been initiated to execute the numerical simulation. The software MAPLE-18 is used to run the entire simulation with an indispensable accuracy rate. Several streamlines, graphs, and requisite tables are executed to divulge the parametric impact on the nanofluidic stream. Entropy generation–related figures are depicted for diverse parameters, and parametric effects on Bejan number are also analyzed. Moreover, the corresponding physical consignments like the measure of the frictional hindrance, heat transport are calculated and reviewed. The entropy generation augments for higher magnetic value but reduces for velocity slip, radiation, and nanoparticle concentration. Hybrid nanofluid gives a lower magnitude in entropy production as compared to the usual nanofluid. Magnetic parameter reduces the Bejan number, while slip factor and nanoparticle concentration amplify such effects. Heat transfer ultimately seems to increase for nanoparticle volume fraction, and the increase rate is 4.01685 for usual nanofluid, but it is 6.7557 for hybrid nanofluid. Also, the numerical fallouts address the possibility of using magnetized spinning disks in space engines and nuclear propulsion, and such a model conveys significant applications in heat transport improvement in so many industrial thermal management equipment and renewable energy systems.


Sign in / Sign up

Export Citation Format

Share Document