scholarly journals The distribution and mechanism of iodotyrosine deiodinase defied expectations

2017 ◽  
Vol 632 ◽  
pp. 77-87 ◽  
Author(s):  
Zuodong Sun ◽  
Qi Su ◽  
Steven E. Rokita
1985 ◽  
Vol 108 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Nandalal Bagchi ◽  
Birdie Shivers ◽  
Thomas R. Brown

Abstract. Iodine in excess is known to acutely inhibit thyroidal secretion. In the present study we have characterized the time course of the iodine effect in vitro and investigated the underlying mechanisms. Labelled thyroid glands were cultured in vitro in medium containing mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the proportion of labelled iodotyrosines and iodothyronines recovered at the end of culture and was used as an index of thyroidal secretion. Thyrotrophin (TSH) administered in vivo acutely stimulated the rate of thyroglobulin hydrolysis. Addition of Nal to the culture medium acutely inhibited both basal and TSH-stimulated thyroglobulin hydrolysis. The effect of iodide was demonstrable after 2 h, maximal after 6 h and was not reversible upon removal of iodide. Iodide abolished the dibutyryl cAMP induced stimulation of thyroglobulin hydrolysis. Iodide required organic binding of iodine for its effect but new protein or RNA synthesis was not necessary. The inhibitory effects of iodide and lysosomotrophic agents such as NH4C1 and chloroquin on thyroglobulin hydrolysis were additive suggesting different sites of action. Iodide added in vitro altered the distribution of label in prelabelled thyroglobulin in a way that suggested increased coupling in the thyroglobulin molecule. These data indicate that 1) the iodide effect occurs progressively over a 6 h period, 2) continued presence of iodide is not necessary once the inhibition is established, 3) iodide exerts its action primarily at a post cAMP, prelysosomal site and 4) the effect requires organic binding of iodine, but not new RNA or protein synthesis. Our data are consistent with the hypothesis that excess iodide acutely inhibits thyroglobulin hydrolysis by increasing the resistance of thyroglobulin to proteolytic degradation through increased iodination and coupling.


2013 ◽  
pp. 708-714
Author(s):  
Dietmar Schomburg ◽  
Ida Schomburg

2019 ◽  
Vol 66 (4) ◽  
pp. 349-357
Author(s):  
Aya Yoshihara ◽  
Yuqian Luo ◽  
Yuko Ishido ◽  
Kensei Usukura ◽  
Kenzaburo Oda ◽  
...  

1994 ◽  
Vol 130 (6) ◽  
pp. 601-607 ◽  
Author(s):  
Michiyo Nasu ◽  
Masahiro Sugawara

Nasu M, Sugawara M. Exogenous free iodotyrosine inhibits iodide transport through the sequential intracellular events. Eur J Endocrinol 1944;130:601–7. ISSN 0804–4643 We describe a new function of exogenous iodotyrosine as a regulator of iodide transport. Porcine thyroid follicles in culture were preincubated with 0–20 μmol/l monoiodotyrosine or diiodotyrosine (DIT) in the presence of bovine thyrotropin (TSH) for 24 h; these iodotyrosines inhibited iodide uptake in a dose–response manner. Extracellular [125I]DIT was actively transported to the thyroid follicle in the presence of TSH or (Bu)2cAMP. Inhibition of iodide uptake by iodotyrosine required preincubation with iodotyrosine in the presence of TSH; without TSH, iodotyrosine was ineffective. Follicles preincubated with DIT for 24 h inhibited TSH-mediated cAMP production, which is an important signal for iodide transport. Inhibition of iodide uptake and cAMP generation by iodotyrosine was negated characteristically by 3-nitro-l-tyrosine, an inhibitor of iodotyrosine deiodinase, or by methimazole, an inhibitor of thyroid peroxidase. Our findings suggest that iodotyrosine regulates iodide transport through the following sequential intracellular events: TSH-dependent iodotyrosine transport into the thyroid cell; deiodination of iodotyrosine and release in iodide; iodine organification by the peroxidase system; inhibition of cAMP generation by organified iodine; and inhibition of iodide transport. Thus, exogenous iodotyrosine can serve as an inhibitor of thyroid hormone formation only when TSH is present M Sugawara, Wadsworth VA Hospital (11 IM), Wilshire and Sawtelle Blvds, Los Angeles, CA 90073, USA


2018 ◽  
Vol 28 (1) ◽  
pp. 68-78 ◽  
Author(s):  
Jimin Hu ◽  
Qi Su ◽  
Jamie L. Schlessman ◽  
Steven E. Rokita

Sign in / Sign up

Export Citation Format

Share Document