underlying mechanisms
Recently Published Documents





2022 ◽  
Vol 205 ◽  
pp. 112495
Pascal Vaudin ◽  
Corinne Augé ◽  
Nathalie Just ◽  
Sakina Mhaouty-Kodja ◽  
Stéphane Mortaud ◽  

2022 ◽  
Vol 12 (4) ◽  
pp. 763-769
Liang Yu ◽  
Sheng Zhang ◽  
Wei He

microRNA-136 can inhibit the proliferating activity of malignant cells and also participate in chemotherapy resistance of colorectal cancer via modulating HDAC1. This study assessed miR-136’s effect on NSCLC cell proliferation and underlying mechanisms. Tumor tissues and paracancerous tissues from NSCLC patients were collected to measure miR-136 and HDAC1 level. Cells were transfected with miR-136-mimics, miR-136-inhibitors or miR-136 mimics+HDAC1-OE followed by analysis of cell viability and apoptosis by CCK-8 method and flow cytometry, phosphorylation of Jak2/STAT3 by western blot. miR-136 was significantly downregulated in tumor tissues and NSCLC cells, accompanied by upregulated HDAC1. miR-136 overexpression suppressed HDAC1 expression, retarded phosphorylation and activation of Jak2/STAT3 signaling, reduced NSCLC cell viability and enhanced apoptosis. In addition, co-transfection of miR-136-mimics and HDAC1-OE reversed the inhibitory effects of miR-136 on NSCLC cells. In conclusion, miR-136 is reduced and HDAC1 is increased in NSCLC and miR-136 overexpression inhibited NSCLC cell proliferation and increased apoptosis possibly through regulating HDAC1/Jak2/STAT3 signal pathway, indicating that miR-136 might be a novel target for the treatment of NSCLC.

2022 ◽  
Vol 12 (2) ◽  
pp. 306-315
Jie Song ◽  
Cheng Chen ◽  
Hui Zhang

Osteoarthritis (OA) is a chronic and inflammatory disease, leading to pain or even disability in severe cases. LncRNA PCGEM1 (PCGEM1) is reported to be dysregulated, serving as critical regulators in various human diseases, including OA. However, the biological role of PCGEM1 and its underlying mechanisms during OA remained unclear. In the present study, CHON-001 cells were exposed to interleukin (IL)-1β to construct the OA cell model. Expression of PCGEM1 and miR-152-3p in cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Corresponding commercial kits were used to measure the expressions of lactate dehydrogenase (LDH), inter-leukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. Protein levels of apoptosis-related proteins, cleaved-Caspase3 and Caspase3, were detected by Western blotting. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) tetrazolium (MTT) and flow cytometry assays were utilized for the determination of cell proliferation and apoptosis. The association between PCGEN1 and miR-152-3p was confirmed by a dual-luciferase reporter assay. From the results, PCGEM1 expression was significantly increased while miR-152-3p was inhibited in CHON-001 cells after IL-1β treatment. In addition, silencing of PCGEM1 could promote proliferation, inhibit the apoptosis, suppress LDH level and alleviate inflammation response caused by IL-1β in CHON-001 cells by sponging miR-152-3p. In a word, PCGEM1 down-regulation suppressed OA progression by the regulation of miR-152-3p expression, functioning as a potential therapeutic target for OA clinical treatment.

2022 ◽  
Vol 81 ◽  
pp. 102910
Leila Alizadehsaravi ◽  
Ruud A.J. Koster ◽  
Wouter Muijres ◽  
Huub Maas ◽  
Sjoerd M. Bruijn ◽  

2022 ◽  
Vol 319 ◽  
pp. 126133
Danna Wang ◽  
Xinyue Wang ◽  
Ashraf Ashour ◽  
Liangsheng Qiu ◽  
Baoguo Han

2022 ◽  
Vol 12 ◽  
Jing Liu ◽  
David A. Dean

Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome that leads to acute respiratory failure and accounts for over 70,000 deaths per year in the United States alone, even prior to the COVID-19 pandemic. While its molecular details have been teased apart and its pathophysiology largely established over the past 30 years, relatively few pharmacological advances in treatment have been made based on this knowledge. Indeed, mortality remains very close to what it was 30 years ago. As an alternative to traditional pharmacological approaches, gene therapy offers a highly controlled and targeted strategy to treat the disease at the molecular level. Although there is no single gene or combination of genes responsible for ARDS, there are a number of genes that can be targeted for upregulation or downregulation that could alleviate many of the symptoms and address the underlying mechanisms of this syndrome. This review will focus on the pathophysiology of ARDS and how gene therapy has been used for prevention and treatment. Strategies for gene delivery to the lung, such as barriers encountered during gene transfer, specific classes of genes that have been targeted, and the outcomes of these approaches on ARDS pathogenesis and resolution will be discussed.

Weibin Ruan ◽  
Xinyun Ji ◽  
Yating Qin ◽  
Xinxin Zhang ◽  
Xiaoning Wan ◽  

Sepsis is a dysregulated systemic inflammatory response that often leads to cardiac dysfunction, which is termed sepsis-induced cardiomyopathy (SIC). Harmine, a natural β-carboline alkaloid compound, has been shown to exert pharmacological effects on several diseases. Here, we investigated whether harmine protected against SIC development and the underlying mechanisms. In vitro, the expression of the M1 phenotype markers iNOS and COX-2 was increased in RAW 264.7 cells stimulated with lipopolysaccharide (LPS), but this effect was reversed by the harmine intervention. Furthermore, LPS-induced increases in the levels of inflammatory cytokines, including IL-1β, IL-6, TNF-α, iNOS, COX-2, PGE2 and TXB2, generated by macrophages were suppressed when the cells were pretreated with harmine. Meanwhile, our findings showed that harmine administration effectively attenuated inflammation and apoptosis in H9c2 cells in the proinflammatory environment produced by macrophages, as evidenced by reductions in NLRP3 and cleaved caspase 3 levels and the p-NF-κB/NF-κB ratio. The western blot results indicated that the mechanisms underlying harmine-mediated inhibition of M1 polarization might be associated with suppression of STAT1/3, NF-κB and MAPK activation. Furthermore, an LPS injection induced cardiac dysfunction and decreased the survival rate of mice, which were alleviated by harmine treatment, and the relevant mechanism was possibly attributed to a drug-induced attenuation of the inflammatory and apoptotic processes in cardiomyocytes. Collectively, these results implied that harmine treatment protected against SIC by suppressing M1 phenotypic polarization and inflammation in macrophages.

2022 ◽  
Vol 12 ◽  
Chunhong Wang ◽  
Jiafeng Liu ◽  
Xiaoyao Zhang ◽  
Qiyan Chen ◽  
Xiaoyan Bai ◽  

Podocyte injury and proteinuria are the most common features of glomerular disease, which is the leading cause of end-stage renal failure. Hyperactivated Wnt/β-catenin signaling is closely associated with podocyte injury, but the underlying mechanisms are incompletely understood. Here we show that miRNA-671-5p (miR-671-5p) plays a crucial role in mediating β-catenin-triggered podocyte injury by targeting Wilms tumor 1 (WT1). Microarray-based expression profiling revealed that miR-671-5p was the most upregulated miRNA in podocytes after β-catenin activation. MiR-671-5p was colocalized with β-catenin in the glomeruli of proteinuric CKD in vivo. Bioinformatics analyses and luciferase reporter assays confirmed that miR-671-5p targeted WT1 mRNA. Overexpression of miR-671-5p mimics inhibited WT1 and impaired podocyte integrity, whereas miR-671-5p antagomir preserved the expression of WT1 and other podocyte-specific proteins under basal conditions or after β-catenin activation. In mouse remnant kidney model, overexpression of miR-671-5p aggravated podocyte injury, worsened kidney dysfunction and exacerbated renal fibrosis after 5/6 nephrectomy. In contrast, miR-671-5p antagomir alleviated podocyte injury and attenuated proteinuria and renal fibrotic lesions after glomerular injury in vivo. These studies underscore a pivotal role of miR-671-5p in mediating WT1 depletion and podocyte injury induced by β-catenin. Targeting miR-671-5p may serve as a new approach to prevent podocyte injury and proteinuria in proteinuric CKD.

Sign in / Sign up

Export Citation Format

Share Document