Neighboring optimal guidance and constrained attitude control applied to three-dimensional lunar ascent and orbit injection

2019 ◽  
Vol 156 ◽  
pp. 78-91 ◽  
Author(s):  
Mauro Pontani ◽  
Fabio Celani
Author(s):  
Mauro Pontani ◽  
Fabio Celani

AbstractAccurate orbit injection represents a crucial issue in several mission scenarios, e.g., for spacecraft orbiting the Earth or for payload release from the upper stage of an ascent vehicle. This work considers a new guidance and control architecture based on the combined use of (i) the variable-time-domain neighboring optimal guidance technique (VTD-NOG), and (ii) the constrained proportional-derivative (CPD) algorithm for attitude control. More specifically, VTD-NOG & CPD is applied to two distinct injection maneuvers: (a) Hohmann-like finite-thrust transfer from a low Earth orbit to a geostationary orbit, and (b) orbit injection of the upper stage of a launch vehicle. Nonnominal flight conditions are modeled by assuming errors on the initial position, velocity, attitude, and attitude rate, as well as actuation deviations. Extensive Monte Carlo campaigns prove effectiveness and accuracy of the guidance and control methodology at hand, in the presence of realistic deviations from nominal flight conditions.


2022 ◽  
Author(s):  
Hongyan Li ◽  
Shaoming He ◽  
Jiang Wang ◽  
Hyo-Sang Shin ◽  
Antonios Tsourdos

Author(s):  
Innocent Okoloko ◽  
Yoonsoo Kim

We present a graph theoretic and optimization based method for attitude and position consensus of a team of communicating vehicles navigating in three dimensional space. Coordinated control of such vehicles has applications in planetary scale mobile sensor networks, and multiple vehicle navigation in general. Using the Laplacian matrix of the communication graph, and attitude quaternions, a synthesis of the optimal stochastic matrix that drives the attitudes to consensus, is done, by solving a constrained semidefinite program. This novel methodology attempts to extend quadratically constrained attitude control (Q-CAC), to the consensus framework. The solutions obtained are used to realize coordinated rendezvous, and formation acquisition, in the presence of static and dynamic obstacles.


Sign in / Sign up

Export Citation Format

Share Document