Topology optimization design of improved response surface method for time-variant reliability

2020 ◽  
Vol 146 ◽  
pp. 102828 ◽  
Author(s):  
Ning Gan ◽  
Qianxuan Wang
2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Qinghai Zhao ◽  
Xiaokai Chen ◽  
Zheng-Dong Ma ◽  
Yi Lin

A mathematical framework is developed which integrates the reliability concept into topology optimization to solve reliability-based topology optimization (RBTO) problems under uncertainty. Two typical methodologies have been presented and implemented, including the performance measure approach (PMA) and the sequential optimization and reliability assessment (SORA). To enhance the computational efficiency of reliability analysis, stochastic response surface method (SRSM) is applied to approximate the true limit state function with respect to the normalized random variables, combined with the reasonable design of experiments generated by sparse grid design, which was proven to be an effective and special discretization technique. The uncertainties such as material property and external loads are considered on three numerical examples: a cantilever beam, a loaded knee structure, and a heat conduction problem. Monte-Carlo simulations are also performed to verify the accuracy of the failure probabilities computed by the proposed approach. Based on the results, it is demonstrated that application of SRSM with SGD can produce an efficient reliability analysis in RBTO which enables a more reliable design than that obtained by DTO. It is also found that, under identical accuracy, SORA is superior to PMA in view of computational efficiency.


2019 ◽  
Vol 36 (3) ◽  
pp. 1055-1078 ◽  
Author(s):  
Hailiang Su ◽  
Fengchong Lan ◽  
Yuyan He ◽  
Jiqing Chen

Purpose Meta-model method has been widely used in structural reliability optimization design. The main limitation of this method is that it is difficult to quantify the error caused by the meta-model approximation, which leads to the inaccuracy of the optimization results of the reliability evaluation. Taking the local high efficiency of the proxy model, this paper aims to propose a local effective constrained response surface method (LEC-RSM) based on a meta-model. Design/methodology/approach The operating mechanisms of LEC-RSM is to calculate the index of the local relative importance based on numerical theory and capture the most effective area in the entire design space, as well as selecting important analysis domains for sample changes. To improve the efficiency of the algorithm, the constrained efficient set algorithm (ESA) is introduced, in which the sample point validity is identified based on the reliability information obtained in the previous cycle and then the boundary sampling points that violate the constraint conditions are ignored or eliminated. Findings The computational power of the proposed method is demonstrated by solving two mathematical problems and the actual engineering optimization problem of a car collision. LEC-RSM makes it easier to achieve the optimal performance, less feature evaluation and fewer algorithm iterations. Originality/value This paper proposes a new RSM technology based on proxy model to complete the reliability design. The originality of this paper is to increase the sampling points by identifying the local importance of the analysis domain and introduce the constrained ESA to improve the efficiency of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document