meta model
Recently Published Documents


TOTAL DOCUMENTS

1195
(FIVE YEARS 250)

H-INDEX

33
(FIVE YEARS 5)

2022 ◽  
Vol 27 (2) ◽  
pp. 1-23
Author(s):  
Xiao Shi ◽  
Hao Yan ◽  
Qiancun Huang ◽  
Chengzhen Xuan ◽  
Lei He ◽  
...  

“Curse of dimensionality” has become the major challenge for existing high-sigma yield analysis methods. In this article, we develop a meta-model using Low-Rank Tensor Approximation (LRTA) to substitute expensive SPICE simulation. The polynomial degree of our LRTA model grows linearly with the circuit dimension. This makes it especially promising for high-dimensional circuit problems. Our LRTA meta-model is solved efficiently with a robust greedy algorithm and calibrated iteratively with a bootstrap-assisted adaptive sampling method. We also develop a novel global sensitivity analysis approach to generate a reduced LRTA meta-model which is more compact. It further accelerates the procedure of model calibration and yield estimation. Experiments on memory and analog circuits validate that the proposed LRTA method outperforms other state-of-the-art approaches in terms of accuracy and efficiency.


Author(s):  
Fa Zhang ◽  
Shi-Hui Wu ◽  
Zhi-Hua Song

Multi-agent based simulation (MABS) is an important approach for studying complex systems. The Agent-based model often contains many parameters, these parameters are usually not independent, with differences in their range, and may be subjected to constraints. How to use MABS investigating complex systems effectively is still a challenge. The common tasks of MABS include: summarizing the macroscopic patterns of the system, identifying key factors, establishing a meta-model, and optimization. We proposed a framework of experimental design and data mining for MABS. In the framework, method of experimental design is used to generate experiment points in the parameter space, then generate simulation data, and finally using data mining techniques to analyze data. With this framework, we could explore and analyze complex system iteratively. Using central composite discrepancy (CCD) as measure of uniformity, we designed an algorithm of experimental design in which parameters could meet any constraints. We discussed the relationship between tasks of complex system simulation and data mining, such as using cluster analysis to classify the macro patterns of the system, and using CART, PCA, ICA and other dimensionality reduction methods to identify key factors, using linear regression, stepwise regression, SVM, neural network, etc. to build the meta-model of the system. This framework integrates MABS with experimental design and data mining to provide a reference for complex system exploration and analysis.


2022 ◽  
Vol 31 (1) ◽  
pp. 1-27
Author(s):  
Amin Nikanjam ◽  
Houssem Ben Braiek ◽  
Mohammad Mehdi Morovati ◽  
Foutse Khomh

Nowadays, we are witnessing an increasing demand in both corporates and academia for exploiting Deep Learning ( DL ) to solve complex real-world problems. A DL program encodes the network structure of a desirable DL model and the process by which the model learns from the training dataset. Like any software, a DL program can be faulty, which implies substantial challenges of software quality assurance, especially in safety-critical domains. It is therefore crucial to equip DL development teams with efficient fault detection techniques and tools. In this article, we propose NeuraLint , a model-based fault detection approach for DL programs, using meta-modeling and graph transformations. First, we design a meta-model for DL programs that includes their base skeleton and fundamental properties. Then, we construct a graph-based verification process that covers 23 rules defined on top of the meta-model and implemented as graph transformations to detect faults and design inefficiencies in the generated models (i.e., instances of the meta-model). First, the proposed approach is evaluated by finding faults and design inefficiencies in 28 synthesized examples built from common problems reported in the literature. Then NeuraLint successfully finds 64 faults and design inefficiencies in 34 real-world DL programs extracted from Stack Overflow posts and GitHub repositories. The results show that NeuraLint effectively detects faults and design issues in both synthesized and real-world examples with a recall of 70.5% and a precision of 100%. Although the proposed meta-model is designed for feedforward neural networks, it can be extended to support other neural network architectures such as recurrent neural networks. Researchers can also expand our set of verification rules to cover more types of issues in DL programs.


2022 ◽  
pp. 199-215
Author(s):  
Chrystalleni Aristidou ◽  
Kevin Lee ◽  
Kalvinder Shields

2021 ◽  
Vol 11 (24) ◽  
pp. 12026
Author(s):  
Seungpyo Hong ◽  
Dongseok Shin ◽  
Euysik Jeon

Accurate and efficient estimation and prediction of the nonlinear behavior of materials during plastic working is a major issue in academic and industrial settings. Studies on property meta-models are being conducted to estimate and predict plastic working results. However, accurately representing strong nonlinear properties using power-law and exponential models, which are typical meta-models, is difficult. The combination meta-model can be used to solve this problem, but the possible number of parameters increases. This causes a cost problem when using FE simulation. In this study, the accuracy of the nonlinear properties of materials and the number of iterations were compared for three typical meta-models and the proposed advanced meta-models considering stress–strain properties. A material property test was conducted using ASTM E8/E8M, and the meta-model was initialized using ASTM E646 and MATLAB Curve Fitting Toolbox. A finite element (FE) simulation was conducted for the meta-models, and the test and simulation results were compared in terms of the engineering stress–strain curve and the root-mean-square error (RMSE). In addition, an inverse method was applied for the FE simulation to estimate the true stress–strain properties, and the results were analyzed in terms of the RMSE and the number of iterations and simulations. Finally, the need for an advanced meta-model that exhibits strong nonlinearity was suggested.


2021 ◽  
Author(s):  
Jane M Carrington ◽  
Rene Love

Telehealth is a means for providing care to our rural patients. This mode of healthcare delivery is not without challenges with technology, research, quality improvement, practice and education. Here we present the TRIP-E Meta Model. This model was derived from a two phased process. First, we performed a review of literature and from this developed the first attempt at model development. Second, we took student evaluations from a telehealth education program for Doctor of Nursing Practice students. Based on their feedback, we then further advanced the first model to the TRIP-E Meta Model. This model is a comprehensive guide to research, quality improvement, practice and education. As a meta model, the TRIP-E can have other theories applied for projects. This feature of meta models provide flexibility for the model. We invite others to test this model for its flexibility and usability.


Sign in / Sign up

Export Citation Format

Share Document