scholarly journals Jacobi spectral collocation technique for fractional inverse parabolic problem

Author(s):  
M.A. Abdelkawy ◽  
M. E.A. Zaky ◽  
Mohammed M. Babatin ◽  
Abeer S. Alnahdi
2021 ◽  
Vol 6 (1) ◽  
pp. 9
Author(s):  
Mohamed M. Al-Shomrani ◽  
Mohamed A. Abdelkawy

The advection–dispersion equations have gotten a lot of theoretical attention. The difficulty in dealing with these problems stems from the fact that there is no perfect answer and that tackling them using local numerical methods is tough. The Riesz fractional advection–dispersion equations are quantitatively studied in this research. The numerical methodology is based on the collocation approach and a simple numerical algorithm. To show the technique’s performance and competency, a comprehensive theoretical formulation is provided, along with numerical examples.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Mohammad Hossein Daliri Birjandi ◽  
Jafar Saberi-Nadjafi ◽  
Asghar Ghorbani

An efficient iteration method is introduced and used for solving a type of system of nonlinear Volterra integro-differential equations. The scheme is based on a combination of the spectral collocation technique and the parametric iteration method. This method is easy to implement and requires no tedious computational work. Some numerical examples are presented to show the validity and efficiency of the proposed method in comparison with the corresponding exact solutions.


Author(s):  
Mohamed A. Abdelkawy

Abstract This paper addresses a spectral collocation technique to treat the stochastic Volterra–Fredholm integral equations (SVF-IEs). The shifted Legendre–Gauss–Radau collocation (SL-GR-C) method is developed for approximating the FSV-IDEs. The principal target in our technique is to transform the SVF-IEs to a system of algebraic equations. For computational purposes, the Brownian motion W(x) is discretized by Lagrange interpolation. While the integral terms are interpolated by Legendre–Gauss–Lobatto quadrature. Some numerical examples are given to test the accuracy and applicability of our technique. Also, an error analysis is introduced for the proposed method.


Sign in / Sign up

Export Citation Format

Share Document