computational work
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 75)

H-INDEX

14
(FIVE YEARS 4)

2021 ◽  
pp. 1-8
Author(s):  
Mohammad Hasan Kamel Attar Kar ◽  
Mohammad Yousefi

This computational work was performed to investigate drug delivery of 5-fluorouracil (FU) anti-cancer by assistance of an iron(Fe)-modified graphene (G) scaffold. The models were optimized to reach the minimized energy structures in both of singular and bimolecular models. Two models of FU@G complex were obtained including O2@G and O4@G by relaxation of FU through O2 and O4 atoms towards the Fe-atom region of G surface. The obtained results of energies indicated a higher stability and strength for the O2@G model in comparison with the O4@G model. The quantitative and qualitative features of electronic molecular orbitals indicated the investigated G surface could work as a carrier of FU by reducing the unwanted side effects and also playing the sensor role. As a final remark of this work, the investigated G model could be proposed for employing in the targeted drug delivery of FU in both of carrier and sensor agents.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
H. R. Marasi ◽  
M. Sedighi ◽  
H. Aydi ◽  
Y. U. Gaba

In this paper, we use the concept of homotopy, Laplace transform, and He’s polynomials, to propose the auxiliary Laplace homotopy parameter method (ALHPM). We construct a homotopy equation consisting on two auxiliary parameters for solving nonlinear differential equations, which switch nonlinear terms with He’s polynomials. The existence of two auxiliary parameters in the homotopy equation allows us to guarantee the convergence of the obtained series. Compared with numerical techniques, the method solves nonlinear problems without any discretization and is capable to reduce computational work. We use the method for different types of singular Emden–Fowler equations. The solutions, constructed in the form of a convergent series, are in excellent agreement with the existing solutions.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Kinfe Woldegiorges ◽  
Abebe Belay ◽  
Alemu Kebede ◽  
Tamirat Abebe

Levofloxacin (LVF) and norfloxacin (NRF) are a group of fluoroquinolone antibiotics, broad spectrum used to treat various infections caused by many bacterial species. The drugs contain functional groups which control the type and degree of interaction with different solvents. In this research, the ground and excited state dipole moments of LVF and NRF drugs were estimated using solvatochromic effects and computational work. The dipole moments were estimated from absorption and emission spectra in polar and nonpolar solvents using Bakhshiev’s, Kawski–Chamma–Viallet, Lippert–Mataga, and Reichardt models. The results indicated the emission spectra are more strongly affected by solvent polarity than the absorption spectra. The calculated excited state dipole moment is larger than that of the ground state, indicating that the probe compounds are significantly more polarized in the excited state than in the ground state. From computational work, the HOMO-LUMO energy band gap, the dipole moments, electron charge density distribution, and oscillator strength were determined using the semiempirical MP6 method, DFT-B3LYP-6-31G, and DFT-B3LYP-3-21G employing Gaussian 09 software. In general, larger dipole moments were obtained by computation rather than from experiments due to the absence of solvent effects.


Author(s):  
Emad Alharbi ◽  
Paul Bond ◽  
Radu Calinescu ◽  
Kevin Cowtan

Proteins are macromolecules that perform essential biological functions which depend on their three-dimensional structure. Determining this structure involves complex laboratory and computational work. For the computational work, multiple software pipelines have been developed to build models of the protein structure from crystallographic data. Each of these pipelines performs differently depending on the characteristics of the electron-density map received as input. Identifying the best pipeline to use for a protein structure is difficult, as the pipeline performance differs significantly from one protein structure to another. As such, researchers often select pipelines that do not produce the best possible protein models from the available data. Here, a software tool is introduced which predicts key quality measures of the protein structures that a range of pipelines would generate if supplied with a given crystallographic data set. These measures are crystallographic quality-of-fit indicators based on included and withheld observations, and structure completeness. Extensive experiments carried out using over 2500 data sets show that the tool yields accurate predictions for both experimental phasing data sets (at resolutions between 1.2 and 4.0 Å) and molecular-replacement data sets (at resolutions between 1.0 and 3.5 Å). The tool can therefore provide a recommendation to the user concerning the pipelines that should be run in order to proceed most efficiently to a depositable model.


2021 ◽  
Author(s):  
Jordan A. Herder ◽  
Aaron D. Nicholas ◽  
Christopher L. Cahill

Reported are the syntheses, structural characterizations and luminescence properties of three novel [UO2Cl4]2 bearing compounds containing substituted 1,1’-dialkyl-4,4’-bipyridinum dications (i.e. viologens). These compounds undergo photoinduced luminescence quenching upon exposure to UV radiation. Kinetic analyses indicate the degree of quenching follows a second-order rate law with a rate constant dependent on viologen substituent. This phenomenon is proposed to involve the formal transfer of one electron from the [UO2Cl4]2- to the viologen species. This proposed mechanism is supported through a series of calculations and computational work including Rehm-Weller analysis, time-dependent density functional theory (TD-DFT), and density of states (DOS). This work constitutes the first study of an oxidized uranyl complex anion which expands the conventional understanding of uranyl photoreactivity.


Author(s):  
R. M. Wayal

In this article, the Laplace decomposition method and Modified Laplace decomposition method have been employed to obtain the exact and approximate solutions of the Klein-Gordon equation with the initial profile. An approximate solution obtained by these methods is in good agreement with the exact solution and shows that these approaches can solve linear and nonlinear problems very effectively and are capable to reduce the size of computational work.


Fractals ◽  
2021 ◽  
Author(s):  
SAAD ALTHOBAITI ◽  
RAVI SHANKER DUBEY ◽  
JYOTI GEETESH PRASAD

In this paper, we solve the local fractional generalized Fokker–Planck equation. To solve the problem, local fractional Mohand transform with Adomian decomposition method is introduced due to its simple approach and less computational work. Furthermore, for the applicability of the technique, we illustrate some examples and their exact or approximate solutions with their graphical representations.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1986
Author(s):  
Noha M. Rasheed ◽  
Mohammed O. Al-Amr ◽  
Emad A. Az-Zo’bi ◽  
Mohammad A. Tashtoush ◽  
Lanre Akinyemi

This paper studies the propagation of the short pulse optics model governed by the higher-order nonlinear Schrödinger equation (NLSE) with non-Kerr nonlinearity. Exact one-soliton solutions are derived for a generalized case of the NLSE with the aid of software symbolic computations. The modified Kudryashov simple equation method (MSEM) is employed for this purpose under some parametric constraints. The computational work shows the difference, effectiveness, reliability, and power of the considered scheme. This method can treat several complex higher-order NLSEs that arise in mathematical physics. Graphical illustrations of some obtained solitons are presented.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caitlin Siu ◽  
Justin Balsor ◽  
Sam Merlin ◽  
Frederick Federer ◽  
Alessandra Angelucci

AbstractThe mammalian sensory neocortex consists of hierarchically organized areas reciprocally connected via feedforward (FF) and feedback (FB) circuits. Several theories of hierarchical computation ascribe the bulk of the computational work of the cortex to looped FF-FB circuits between pairs of cortical areas. However, whether such corticocortical loops exist remains unclear. In higher mammals, individual FF-projection neurons send afferents almost exclusively to a single higher-level area. However, it is unclear whether FB-projection neurons show similar area-specificity, and whether they influence FF-projection neurons directly or indirectly. Using viral-mediated monosynaptic circuit tracing in macaque primary visual cortex (V1), we show that V1 neurons sending FF projections to area V2 receive monosynaptic FB inputs from V2, but not other V1-projecting areas. We also find monosynaptic FB-to-FB neuron contacts as a second motif of FB connectivity. Our results support the existence of FF-FB loops in primate cortex, and suggest that FB can rapidly and selectively influence the activity of incoming FF signals.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Katrina R. Quinn ◽  
Lenka Seillier ◽  
Daniel A. Butts ◽  
Hendrikje Nienborg

AbstractFeedback in the brain is thought to convey contextual information that underlies our flexibility to perform different tasks. Empirical and computational work on the visual system suggests this is achieved by targeting task-relevant neuronal subpopulations. We combine two tasks, each resulting in selective modulation by feedback, to test whether the feedback reflected the combination of both selectivities. We used visual feature-discrimination specified at one of two possible locations and uncoupled the decision formation from motor plans to report it, while recording in macaque mid-level visual areas. Here we show that although the behavior is spatially selective, using only task-relevant information, modulation by decision-related feedback is spatially unselective. Population responses reveal similar stimulus-choice alignments irrespective of stimulus relevance. The results suggest a common mechanism across tasks, independent of the spatial selectivity these tasks demand. This may reflect biological constraints and facilitate generalization across tasks. Our findings also support a previously hypothesized link between feature-based attention and decision-related activity.


Sign in / Sign up

Export Citation Format

Share Document