Dune field reactivation from blowouts: Sevier Desert, UT, USA

2013 ◽  
Vol 11 ◽  
pp. 75-84 ◽  
Author(s):  
Thomas E. Barchyn ◽  
Chris H. Hugenholtz
Keyword(s):  
2019 ◽  
Author(s):  
Mackenzie D. Day ◽  
◽  
Dominique Stumbaugh ◽  
Kenneth S. Edgett
Keyword(s):  

2019 ◽  
Author(s):  
Henry D. Kramer ◽  
◽  
Colton W. Byers ◽  
Gregory S. Baker ◽  
Paul Baldauf ◽  
...  
Keyword(s):  

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1269
Author(s):  
George Alexandrakis ◽  
Stelios Petrakis ◽  
Nikolaos A. Kampanis

Understanding the processes that govern the transformation of the landscape through time is essential for exploring the evolution of a coastal area. Coastal landscapes are dynamic sites, with their evolution strongly linked with waves and sea level variations. Geomorphological features in the coastal area, such as beachrock formations and dune fields, can function as indicators of the coastal landscape evolution through time. However, our knowledge of the chronological framework of coastal deposits in the Aegean coasts is limited. Optically Stimulated Luminescence dating techniques are deemed to be very promising in direct dating of the coastal sediments, especially when they are linked with archaeological evidence. The dating of the sediments from different sediment core depths, determined by the method of luminosity, allowed us to calculate the rate of sediment deposition over time. More recent coastal evolution and stability were examined from 1945 to 2020 with the use of aerial photographs and satellite images. This paper presents the 6000 ka evolution of a coastal landscape based on geomorphological, archaeological, and radio-chronological data. Based on the results, the early stages of the Ammoudara beach dune field appears to have been formed ~9.0–9.6 ka BP, while the OSL ages from 6 m depth represented the timing of its stabilization (OSL ages ~5–6 ka). This indicates that the dune field appears to already have been formed long before the Bronze Age (5–10 ka BP). It became stabilized with only localized episodes of dune reactivation occurring. In contrast, while high coastal erosion rates were calculated for modern times.


CATENA ◽  
2021 ◽  
Vol 201 ◽  
pp. 105193
Author(s):  
Luigi Borrelli ◽  
Loredana Antronico ◽  
Emilia Le Pera ◽  
Barbara Pisano ◽  
Marino Sorriso-Valvo

The Holocene ◽  
2020 ◽  
pp. 095968362098168
Author(s):  
Christian Stolz ◽  
Magdalena Suchora ◽  
Irena A Pidek ◽  
Alexander Fülling

The specific aim of the study was to investigate how four adjacent geomorphological systems – a lake, a dune field, a small alluvial fan and a slope system – responded to the same impacts. Lake Tresssee is a shallow lake in the North of Germany (Schleswig-Holstein). During the Holocene, the lake’s water surface declined drastically, predominately as a consequence of human impact. The adjacent inland dune field shows several traces of former sand drift events. Using 30 new radiocarbon ages and the results of 16 OSL samples, this study aims to create a new timeline tracing the interaction between lake and dunes, as well, as how both the lake and the dunes reacted to environmental changes. The water level of the lake is presumed to have peaked during the period before the Younger Dryas (YD; start at 10.73 ka BC). After the Boreal period (OSL age 8050 ± 690 BC) the level must have undergone fluctuations triggered by climatic events and the first human influences. The last demonstrable high water level was during the Late Bronze Age (1003–844 cal. BC). The first to the 9th century AD saw slightly shrinking water levels, and more significant ones thereafter. In the 19th century, the lake area was artificially reduced to a minimum by the human population. In the dunes, a total of seven different phases of sand drift were demonstrated for the last 13,000 years. It is one of the most precisely dated inland-dune chronologies of Central Europe. The small alluvial fan took shape mainly between the 13th and 17th centuries AD. After 1700 cal. BC (Middle Bronze Age), and again during the sixth and seventh centuries AD, we find enhanced slope activity with the formation of Holocene colluvia.


Sign in / Sign up

Export Citation Format

Share Document