Hemiretinal Asymmetry in Peripapillary Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes

Author(s):  
Kendra L. Hong ◽  
Bruce Burkemper ◽  
Anna L. Urrea ◽  
Brenda R. Chang ◽  
Jae C. Lee ◽  
...  
2016 ◽  
Vol 57 (9) ◽  
pp. OCT451 ◽  
Author(s):  
Adeleh Yarmohammadi ◽  
Linda M. Zangwill ◽  
Alberto Diniz-Filho ◽  
Min Hee Suh ◽  
Patricia Isabel Manalastas ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Nevin W. El-Nimri ◽  
Patricia Isabel C. Manalastas ◽  
Linda M. Zangwill ◽  
James A. Proudfoot ◽  
Christopher Bowd ◽  
...  

Author(s):  
Rajgopal Mani ◽  
Jon Holmes ◽  
Kittipan Rerkasem ◽  
Nikolaos Papanas

Dynamic optical coherence tomography (D-OCT) is a relatively new technique that may be used to study the substructures in the retina, in the skin and its microcirculation. Furthermore, D-OCT is a validated method of imaging blood flow in skin microcirculation. The skin around venous and mixed arterio-venous ulcers was imaged and found to have tortuous vessels assumed to be angiogenic sprouts, and classified as dots, blobs, coils, clumps, lines, and curves. When these images were analyzed and measurements of vessel density were made, it was observed that the prevalence of coils and clumps in wound borders was significantly greater compared with those at wound centers. This reinforced the belief of inward growth of vessels from wound edge toward wound center which, in turn, reposed confidence in following the wound edge to study healing. D-OCT imaging permits the structure and the function of the microcirculation to be imaged, and vessel density measured. This offers a new vista of skin microcirculation and using it, to better understand angiogenesis in chronic wounds.


Angiogenesis ◽  
2021 ◽  
Author(s):  
Delphine M. Lees ◽  
Louise E. Reynolds ◽  
Ana Rita Pedrosa ◽  
Marina Roy-Luzarraga ◽  
Kairbaan M. Hodivala-Dilke

AbstractFocal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is overexpressed in many cancer types and in vivo studies have shown that vascular endothelial cell FAK expression and FAK-phosphorylation at tyrosine (Y) 397, and subsequently FAK-Y861, are important in tumour angiogenesis. Pericytes also play a vital role in regulating tumour blood vessel stabilisation, but the specific involvement of pericyte FAK-Y397 and FAK-Y861 phosphorylation in tumour blood vessels is unknown. Using PdgfrβCre + ;FAKWT/WT, PdgfrβCre + ;FAKY397F/Y397F and PdgfrβCre + ;FAKY861F/Y861F mice, our data demonstrate that tumour growth, tumour blood vessel density, blood vessel perfusion and pericyte coverage were affected only in late stage tumours in PdgfrβCre + ;FAKY861F/Y861F but not PdgfrβCre + ;FAKY397F/Y397F mice. Further examination indicates a dual role for pericyte FAK-Y861 phosphorylation in the regulation of tumour vessel regression and also in the control of pericyte derived signals that influence apoptosis in cancer cells. Overall this study identifies the role of pericyte FAK-Y861 in the regulation of tumour vessel regression and tumour growth control and that non-phosphorylatable FAK-Y861F in pericytes reduces tumour growth and blood vessel density.


Sign in / Sign up

Export Citation Format

Share Document